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ABSTRACT OF THE DISSERTATION

Efficient Hosted Interpreter for Dynamic Languages

By

Wei Zhang

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2015

Professor Michael Franz, Chair

Motivated by high development costs, production compilers and virtual machines, often

support more than one language. This strategy is most effective when the language family

is homogeneous. Many languages are very amenable to static program analysis, however,

dynamic languages are not. Consequently, a single VM cannot deliver peak performance for

both types of languages without adapting its optimization strategy accordingly.

Informally, we host a “highly dynamic” language (Python) on the Java Virtual Machine, a

VM for “moderately dynamic” languages. While we are not the first to do so, our approach

diverges from current practice by representing Python programs as abstract syntax trees,

ASTs, rather than bytecode. Not only are ASTs the simplest and most natural programming

language implementation, they also lend themselves well to optimizations those are particu-

larly beneficial to highly dynamic languages. Compared to Jython, which compiles Python

programs to Java bytecode, our Python prototype is faster and requires less implementation

effort.

xii



Chapter 1

Introduction

Since their first inception, dynamic languages or sometime referred as dynamically typed pro-

gramming languages have enabled higher productivity for programmers. They are no longer

simply regard as “scripting language” used to accomplish relatively small tasks, but have

become ubiquitous in many domains including scientific computing and web programming.

GitHub [37] is a popular web-based open source software hosting service. Among the six

most poplar programming languages used in the projects hosted on GitHub, four of them

are dynamic languages. They are JavaScript, Python, PHP and Ruby. PYPL [74] is a

popular programming language index created by analyzing how often languages tutorials

are searched on Google. Among the top 16 languages ranked by PYPL, half of them are

dynamic languages. Many of the popular websites we are using today are built using dynamic

languages. For instance, the back-end of Airbnb [3] and Hulu [51] is written in Ruby and

that of Quora [77] and Reddit [78] is written in Python.

Despite their popularity, performance has been the weakness of dynamic languages. Lan-

guages like Python and Ruby are originally implemented as interpreters. Although inter-

preters are easy to implement, their performance is suboptimal. To address this weakness,

1



we have seen recent works that have improved the performance of dynamic languages by

constructing a complete just-in-time (JIT) compilation based virtual machine for one par-

ticular language. This approach offers promising performance benefit, but incurs significant

implementation costs.

Alternatively, language implementors can build their languages on top of an existing mature

virtual machine such as the Java Virtual machine (JVM). In this way, the “guest” language

can reuse the existing components of the “hosting” virtual machine to alleviate its implemen-

tation costs. It also provide the opportunity for the “hosted” language to take advantage of

the underlying JIT compiler to address its performance issue. We explore the performance

potential of “hosted” interpreters for dynamic languages. We do so by hosting a “highly

dynamic” language (Python) on the JVM, a VM for “moderately dynamic” languages.

This thesis makes the following contributions:

• A technique that speedups the execution of “hosted” bytecode interpreters using direct

threading (Chapter 3).

• The first and fast Python 3 prototype implementation targeting the JVM (Chapter 4).

• A new iterator optimization in the context of an optimizing Abstract Syntax Tree

(AST) interpreter (Chapter 5).

• A space efficient object model optimization for dynamic languages hosted on the JVM

(Chapter 6).

2



Chapter 2

Background

2.1 Virtual Machines

In this thesis we refer process virtual machines or application virtual machines simply as

VMs. They usually supports a single process running in a hosted operating system. A VM

provides a high-level abstraction composing a high-level programming language compared to

the traditional low-level system programming languages. This type of VM become popular

since the wide adoption of the Java virtual machine which implements the Java programming

language. Microsoft’s common language runtime is another example. V8 [91], a JavaScript

implementation developed by Google, is a more recent popular language VM.

Virtual machines execute the hosted program in various fashions. The VM can execute

the hosted code using an interpreter, a just-in-time (JIT) compiler or a combination of

both. First the VM parses the targeted program from source code to a form of intermedi-

ate representation (IR). The IR consists of series of “instructions” with each “instruction”

representing exactly one functional operation, e.g., an arithmetic additional operation. The

interpreter then executes the program by translating the IR into actions one piece at a time.

3



For instance the interpreter interprets the IR instruction representing an additional opera-

tion by performing the actual addition. The JIT compiler on the other hand execute the

program by translating the IR into machine code and then redirect execution to the compiled

machine code.

Interpreters often subject to suboptimal performance. This is partially caused to the cost of

by having to process each instruction before executing it. Whereas a JIT compiler performs

the translation prior to the execution of the program and avoid the overhead of processing

repetitively executed instructions. In addition, JIT compilers often implement more ag-

gressive optimizations that potentially skip the execution of some portions of the program

altogether. However, the time the JIT compiler spend in compiling the program does not

directly contribute to the execution of the target program. This delay in compilation makes

JIT compilers less ideal for programs that requires fast response. A VM execution strategy

called “mixed mode” addresses the disadvantages of both options by combining an inter-

preter and JIT compiler. The VM initially executes the target program using the interpreter

for fast response. As the program becomes “hot”, the VM switches the its execution by

using the JIT compiler for fast execution. The VM switches the execution strategy at the

granularity of a compilation unit or a method as defined in the target language. The ini-

tial use of interpreter also helps to collect more runtime information regarding the target

program that can benefit the optimizations later on performed by the JIT compiler.

2.2 Interpreters

Interpreters directly executes a target program without previously compiling them into ma-

chine code [25, 61]. Most interpreters operate on two form of IRs: abstract syntax tree

(AST) [56] and bytecode. ASTs are the most simple and natural way to represent computer

programs. It is straight forward to produce from the source program and easy to manipu-

4



late due to the nature of a tree data structure. However, interpreting an AST requires an

expensive tree traversal step at each node. The overhead caused by the tree traversal is the

main drawback on the performance of an AST interpreter.

Bytecode is a more compact form of IR consisting of a sequence of virtual instructions or

opcode. Each virtual instruction is a number of bytes encoding the detail of a program

operation. The interpretation of bytecode is more efficient than AST since it does not

require traversing a tree data structure. In addition, the VM can encode the result of

semantics analysis of types and scopes in the bytecode, therefore allows better performance.

On the other hand, bytecode is more rigid than ASTs. The format of a bytecode instruction

set is predetermined. It is complicated to apply transformations at runtime because of the

compact data representation of bytecode.

Interpreters are in general simpler to implement and less expensive to maintain. They are

also portable. Since the implementation of an interpreter is not platform dependent, it runs

on all the platform where the language used to implement the interpreter supports. As a

result, the development cycle for a interpreter is considerably shorter than that of a compiler.

It is more affordable for a language implementer to make changes to their language when

implemented as an interpreter.

2.3 Just-In-Time Compilers

JIT compilers, in contrast to traditional compilers that perform compilation ahead of time

(AOT), translate target program into machine code just prior to their execution at runtime.

The main advantage of a JIT compiler is that is can make use of information only available

at runtime to produce better code. For instance, a JIT compiler can make use of Intel’s

SSE2 [60] instructions to accelerate floating point operations if it detects that the CPU
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support them. An AOT compiler on the other hand cannot assume the availability of SSE2

instructions at runtime, therefore must conservatively compile the target program without

the use of SSE2.

There is a wide spectrum between the simplest JIT compilers and the more advanced ones.

The most simple way to implement a JIT compiler is to use a compilation template. A

template compiler translates target program from the input IR to machine code using a

straight forward translation. That is always translating an interpreter instruction to a pre-

determined sequence of machine code. The compiler essentially stitches all the translated

templates into a single piece of machine code and executes it. More advanced JIT compilers

implement more sophisticated internal intermediate representations and advanced optimiza-

tion techniques. For example, Graal [27], a Java JIT compiler developed at Oracle Labs,

uses a graph-based IR that represents a Java program as a sea of graph nodes. The IR

models both control-flow and data-flow dependencies between nodes that allows variety of

transformations performed by the compiler. Graal also implements advanced optimizations

such as partial escape analysis and scalar replacement for Java [88].

One of the most important trade off of using a JIT compiler is compilation time. The longer

the compiler spend in compilation the longer it delays the actual execution of the program,

resulting a longer overall execution time. However, allocating more compilation time allows

the JIT compiler to perform more expensive optimizations to produce more efficient code for

long running programs. Modern VMs use a tier compilation strategy that involves more than

one JIT compilers to execute the target program. The VM first uses a less powerful compiler

to produce machine code in a short period of time, and switches to a more powerful compiler

for “hotter” or longer running methods. This combination allows optimal performance for

both short and long running programs.
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2.4 Type Specialization for Dynamic Languages

Dynamic languages like Python allows symbols or variables to be associated with values of

any type. The type information of a variable is typically unknown before execution. This

lack of type information is the main challenge of compiling and optimizing programs written

in dynamic languages. Prior to the execution of an operation, the type of its operands must

be discovered. This information is necessary for the VM to perform the actual computation.

For instance, for an addition operation in Python, if both of the operands are integers,

an integer addition occurs. If both operands are strings, a string concatenation should

be performed. This overhead of resolving type information for each operation significantly

increases the cost of executing programs written in dynamic languages.

However, value types at a particular program location tend to be stable. Deustch et al. [26]

observed this “type stable” effect in their work in Smalltalk. That is once a variable is

assigned to an integer, it is most likely to stay as an integer in successive executions. Richards

et al. [79] presented that in JavaScript programs 80% of all the call sites has only one type.

Therefore, to speedup dynamic languages, the VMs need to use JIT compilers to produce

better code by exploiting type stabilities.

Type specialization is a technique implemented in modern dynamic language VMs that elim-

inates the overhead of type checking at runtime. Type specialization speculatively assumes

that the operands’ type of an operation stays stable, hence, perform the operation as if it is

typed. For example, if an addition operation was previously resolved as integer addition, type

specialization performs all subsequent the executions as integer addition until its operands

are not integers anymore. Since we only need perform the type check against integers, the

JIT compiler can optimize these simple checks.

Chambers and Ungar [20] demonstrated method customizations in Self. Their solution

generates a customized machine code version using the JIT compiler for each typed signature

7



of a method. Deustch et al. [26] introduced inline caching in Smalltalk. Inline caching caches

the type information for the initial execution of an operation. It assumes type stability

for successive executions to alleviate the type checking cost. Holzle et al. [46] introduced

polymorphic inline caching (PIC). PIC extends inline caching to cache multiple operand

types for which the type checking is still cheaper than a full lookup.

Brunthaler [18] applies quickening to bytecode interpreters, and demonstrated substantial

speedup in his optimized Python interpreter. Quickening performs type specialization by

rewriting the program input bytecode sequence to cache type information. Würthinger [100]

proposed self-optimizing AST interpreters that use profiling and node rewriting to accelerate

its execution. A node rewrite attempts to replace the existing AST node with a type-

specialized version optimized for the cached operand types.
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Chapter 3

Fast Instruction Dispatch for Hosted

Bytecode Interpreters

A programming language interpreter executes programs in two steps. First it parses the

human readable source code, verifies its correctness and translates the code into a more effi-

cient intermediate representation (IR) format. The interpreter then picks up the translated

program and executes it piece by piece.

Bytecode interpreters parse source program into bytecode, a highly compressed representa-

tion of the program. The format of the bytecode is a form of virtual instruction set designed

for this particular interpreter. In the second step bytecode interpreters execute the bytecode

as a sequence of virtual instruction one instruction at a time before finishing the last one.

Interpreters are also regard as virtual machines, since they emulate “machines” with their

own virtual instruction sets.

In this Chapter, we go over performance overheads of bytecode interpreters and the classic

techniques used to minimize these overheads. Lastly, we introduce Modular VM [83, 84], a

research JVM that automatically optimize the performance of hosted bytecode interpreters.
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3.1 Performance Anatomy of Bytecode Interpreters

Bytecode interpreters execute bytecode one instruction at a time. For each instruction, the

interpretation consists of three steps [24]:

• Instruction dispatch

• Operand access

• Performing the function of the instruction

Instruction dispatch includes fetching the next instruction, decoding the instruction and

transferring program execution to the actual implementation of the instruction. Operand

access involves fetching operands required to perform the instruction from either a temporal

operand stack or a virtual register file depending on the design of the virtual instruction

set. It also includes storing the computed result back to where temporal operands should be

stored. Subsequently in the last step the interpreter performs the actual computation. For

instance, if the instruction is addition of two numbers, the actual addition is performed in

this step.

An interesting way to further illustrate the purpose of each interpretation step from the angle

of a virtual machine is to correlate them with the stages in a classic reduced instruction set

computer (RISC) pipeline. Figure 3.1 illustrates the five stages in a classic RISC pipeline:

instruction fetch (IF), instruction decode (ID), execute (EX), memory access (ME) and write

back (WB). The instruction dispatch step in bytecode interpreters is similar to instruction

fetch and decode stages in RISC. We can correlate the late stage of instruction decode,

memory access and write back in RISC to operand access in an interpreter. Since these

are the stages that prepare the operands for the computing unit and stores the end result

back to either a register or memory address. The interpreter step that performs the function
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IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

Classic RISC five stage 
pipeline

Instruction dispatch

Operand access

Perform the function of 
the instruction

Figure 3.1: Interpretation costs of bytecode interpreters

of the instruction works exactly as the execute stage in RISC, which performs the actual

computation.

The cost of running a hosted program on an interpreter consists of the costs of performing

each of the three steps we described above. Among those steps, instruction dispatch and

operand access do not directly contribute to the actual work of the hosted program. The less

time the interpreter spend in these two steps, the more time the interpreter spend in doing

the actual work. Therefore, an efficient bytecode interpreter must encompass techniques

that optimize instruction dispatch and operand access [29, 33, 31].

3.1.1 Switch-based Dispatch

The simplest way to construct a bytecode interpreter is to use an interpreter loop and a

switch statement in the loop to dispatch each bytecode instruction. Figure 3.2(a) illustrates

a switch-based bytecode interpreter loop written in Java. In each iteration of the loop, the
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while!(true)!{
!!int*opcode!=!bytecode[pc++];
**switch!(opcode)!{
!!case*LOAD_FAST:
!!!!//"LOAD_FAST"implementation
!!!!break;
!!case*BINARY_ADD:!{
!!!!PyObject!a!=!stack.pop();
!!!!PyObject!b!=!stack.pop();
!!!!stack.push(a._add(b));
!!!!break;
!!!!}
!!}
}

(a) dispatch loop

bytecode sequence

dispatching 
loop

instruction 
implementations

bytecode fetching indirect branch

direct branch/straight path

(b) branches in switch-based dispatch

Figure 3.2: switch-based dispatch

interpreter fetches the next instruction and use the switch statement to redirect execution to

the case block that implements the instruction. Figure 3.2(b) shows the branches involved

in a switch-based dispatch. Note that each iteration of the dispatch loop shares the same

indirect branch. Since the bytecode sequence is input dependent and unlikely to form a

predictable pattern, branch prediction mechanisms in modern hardware tend to mis-predict

the shared indirect branch. This mis-prediction results in a significant performance penalty

for switch-based bytecode interpreters.

3.2 Efficient Instruction Dispatch Techniques

3.2.1 Direct Threading Dispatch

Instead of letting each instruction dispatch share the same branch, direct threading duplicates

instruction dispatch at the end of each instruction implementation [10, 72, 30, 32, 87, 11].
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Inst%thread[]%=%
%%%%%%%%%%{&add,%&pop...};
//#starting#point!!
goto%*thread++;

//#instruction#implementations
add:
%%sp[1]%=%sp[0]%+%sp[1];
%%sp++;
%%goto!*thread++;
%%

(a) direct threading interpreter

threaded code instruction 
implementations

instruction fetching indirect branch

direct branch/straight path

(b) branches in direct threading dispatch

Figure 3.3: direct threading dispatch

Figure 3.3(a) illustrates this technique written in C. Direct threading requires an additional

translation phase that translates the bytecode sequence into a sequence of pointers namely

the threaded code. Each pointer in the threaded code points to the instruction implemen-

tation that corresponds to the bytecode instruction in the original bytecode input. The

interpreter starts interpretation by jumping to the address pointed by the first pointer in

the threaded code as shown in Figure 3.3(a). Similarly each instruction implementation re-

peat the same dispatch routine at the end of it to forward execution to the next instruction

implementation. The duplicated dispatch branches reduce indirect branch mis-predictions.

Therefore, direct threading alleviates the performance loss we have seen in switch-based

dispatch.

3.2.2 Subroutine Threading Dispatch

Subroutine threading takes one step further by translating the input bytecode sequence

directly to executable machine code. The translated machine code or the subroutine threaded
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thread:!!
!!call!&get_a;
!!call!&get_b;
!!call!&add;

filler

(a) subroutine threaded code

direct branch/straight path

threaded code instruction 
implementations

(b) branches in subroutine threading dispatch

Figure 3.4: subroutine threading dispatch

code is a sequence of machine level calls. Each call is a direct branch jumping to an instruction

implementation as a subroutine. The subroutine threaded code translation phase translates

each input bytecode to a subroutine call to the corresponding instruction implementation.

Each instruction implementation ends with a return instruction that transfer execution back

to the threaded code. Note that the call instruction in subroutine threading is a direct branch.

Although the return instruction is an indirect branch, modern hardware can accurately

predict call/return repairs which results in a performance increase.

3.3 Just-In-Time Threaded Code for Hosted Bytecode

Interpreters

Instruction dispatch greatly affects the overall performance of a bytecode interpreter. The

implementation of an efficient instruction dispatch technique like the ones explained in Sec-

tion 3.2 relies on the use of computed goto’s. Due to the restricted use of pointers, a hosted
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bytecode interpreter written in Java can not make use of those techniques. To address this

issue, we extend the JVM by adding the functionality of threaded code generation to enable

efficient instruction dispatch for hosted interpreters. Our research prototype takes an exist-

ing switch-based bytecode interpreter written in Java, and converts it into a direct threading

interpreter in a semi-automatic fashion.

3.3.1 System Overview

Modular VM

Jython

Python program

Hosted VM

Hosting VM

Figure 3.5: Jython on Modular VM

Our system, Modular VM, is an extension to Maxine VM [97, 63, 90], a research JVM devel-

oped at Oracle Labs. We build Modular VM with the ability to recognize hosted interpreters

running on top of it and automatically optimizes them. We host Jython, a Python VM writ-

ten in Java, on Modular VM in our experiment to show case our optimization. Figure 3.5

illustrates the overall system setup. Modular VM hosts Jython like other regular JVMs.

Jython executes Python program in two fashions: using the baseline bytecode interpreter or

compiling Python code to Java bytecode and let the JVM compiler further compile it down

to machine code. Our optimization focuses on the bytecode interpreter. It shows that by

incorporating efficient interpreter optimizations, bytecode interpreter can deliver comparable

performance to a basic compiler.
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Python code
threaded 

code 
generator

threaded 
code

Jython 
bytecode 

interpreter

interpreter 
optimizer i-ops

jumpfetch

Figure 3.6: Threaded code generation

3.3.2 Threaded Code Generation

Modular VM performs threaded code generation in two steps. First, it recognizes the hosted

interpreter running on top of it and transforms it into an optimized one. To be more specific,

Modular VM extracts all the bytecode instruction implementations or i-ops for short from the

interpreter and compiles them into machine code using the existing Java compiler. Modular

VM then initializes an i-op code table that contains the address of all the compiled i-ops.

After this transformation, the interpreter is ready to execute Python programs. It first

translates Python source code to Python bytecode and then further translates bytecode to

direct threaded code using the i-op code table. The generated threaded code is a sequence

of code pointers copied from the i-op code table.

Figure 3.6 illustrates this work flow. The interpreter optimizer in the Figure applies the

transformation to Jython’s bytecode interpreter. Subsequently, the thread code generator

produces threaded code and executes it. Both interpreter optimizer and threaded code

generator are part of Modular VM. Our system encapsulates the details of i-ops compilation

and threaded code generation from the hosted VM.
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@IOP(Opcode.BINARY_ADD)
void3binary_add()3{
3333PyObject3a3=3stack.pop();
3333PyObject3b3=3stack.pop();
3333stack.push(a._add(b));
}

Figure 3.7: Annotated i-op

Interpreter Annotation

Modular VM uses a Java annotation based domain specific language to integrate with the

hosted interpreter. Our programmable interface provides a set of annotations for hosted

VM implementers to annotate different components of their interpreter. We expect hosted

VM implementers to properly annotate the interpreter class, the bytecode class and all the

i-op methods for our system to identify the structure of the interpreter. Figure 3.7 shows

an annotated i-op in Jython’s bytecode interpreter refactored to its own separate method.

Modular VM automatically picks up Java methods annotated as i-ops, optimizes them and

put them into the i-op code table.

Next Dispatch

@IOP(Opcode.BINARY_ADD)
void3binary_add(ThreadedCode3tc,3int3pc)3{
3333PyObject3a3=3stack.pop();
3333PyObject3b3=3stack.pop();
3333stack.push(a._add(b));
3333next(tc.get(pc++),3tc,3pc);
}

Figure 3.8: I-op with next dispatch

Direct threading, as explained in Chapter 3.2.1, duplicates instruction dispatch at the end of

each instruction implementation or i-op. When the interpreter optimizer compiles an i-op,

it also insert a synthesized next routine at the end of the i-op. The next routine performs

the actual instruction dispatch. Figure 3.8 illustrates the i-op of BINARY ADD in Jython with
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the next routine. Note that the figure shows what the program looks like with the added

instruction dispatch. Hosted VM implementers are not required to write the additional code.

As shown in Figure 3.8, the intrinsic function next performs an indirect jump to the next

i-op in the threaded code. The next routine also passes the reference to the threaded code

and virtual program pointer to the next instruction to continue the execution of the program.

Stack Frame Reusing

As described above, the next instruction dispatch performs a native indirect branch instead

of a call. Therefore, i-ops need to reuse the same stack frame allocated for each Python func-

tion invocation. We implement this using two special i-ops, PROLOGUE and EPILOGUE. Both

of them are manually assembled instead of compiled from Java source code. PROLOGUE, used

at the beginning of a function, allocates a stack frame that is big enough to accommodate

all i-ops. EPILOGUE, used to model RETURN, deallocates the stack frame and returns. The

interpretation of a Python method always start with a PROLOGUE and end with an EPILOGUE.

Stack frame reusing reduces the number of native machine instructions executed for each

hosted virtual machine instruction dispatch.

Efficient Array Stores

Another problem affecting hosted interpreter performance on the JVM is the performance of

array stores. Java being a safe language performs type check such as ArrayStoreException

checks on array stores. Hosted language interpreters like the one in Jython uses an operand

stack to manage temporal operands. Internally, the operand stack is implemented as an Java

object array. During interpretation, every i-op that produces a value performs an array store

onto the operand stack. As a result, the interpreter repeatedly performs the same the type

check, even though every i-op is guaranteed to produce an value that is safe to be stored on
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the operand stack.

We identified the detrimental effect of preserving array type-safety for hosted interpreters.

Our interpreter optimizer omits the ArrayStoreException checks when compiling the i-ops

of hosted interpreters.

An Example

def!add(a,!b):
!!!!return!a!+!b

(a) Python source code

LOAD_FAST)0)))//"a
LOAD_FAST)1)))//"b
BINARY_ADD
RETURN_VALUE

(b) Python bytecode

&LOAD_FAST*0
0*******//"a
&LOAD_FAST*1
1*******//"b
&BINARY_ADD
&RETURN_VALUE

(c) Threaded code

Figure 3.9: Direct threading example

Figure 3.9 illustrates the Python program translation in Jython hosted on Modular VM.

The input program, as shown in Figure 3.9(a), is a simple Python method that adds two pa-

rameters. Jython first converts the program to the bytecode sequence show in Figure 3.9(b).

Note that the bytecode instruction LOAD FAST consists of not only the LOAD FAST opcode it-

self but also an opcode argument (0 or 1) in the bytecode sequence. Figure 3.9(c) shows the

direct threading code produced by the threaded code generator. Aside from the translated

i-op addresses, the threaded code generator also copies opcode arguments, like the one in

LOAD FAST, into the threaded code.

3.4 Evaluation

In this section we evaluate the performance of our bytecode interpreter optimizations. We

compare the performance of Jython’s bytecode interpreter optimized using our system with
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that of the original interpreter both hosted on Modular VM. We also compare our optimized

interpreter with Jython’s class file compiler to further illustrate the software engineering

benefits of our approach.

System Setup

Our system setup is as follows:

• Intel Xeon E5-2660 based system, running at a frequency of 2.20 GHz, using the Linux

3.2.0 − 29 kernel and gcc version 4.6.3.

• Modular VM build from revision number 0d1145f based on Maxine 1.0.

• Jython version 2.7.0 alpha 2.

Benchmark Selection

We select several benchmarks from the computer language benchmarks game [34], a popular

benchmark suite for evaluating the performance of different programming languages. We

run each benchmark with multiple arguments to increase the range of the measured running

time. We run ten repetitions of each benchmark for each argument and report the geometric

mean over all runs.

Speedups over Switch-based Interpreter

Figure 3.10 shows the speedups of our optimized direct threaded code interpreter over the

switch-based interpreter in Jython. Direct threading itself achieves an average speedup of

1.66 over the original interpreter. Combined with the efficient array stores, it achieves an

average speedup of 2.45 over the switch-based interpreter.
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binarytrees.py 14
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Direct Threaded Code Interpreter
Direct Threaded Code Interpreter w/ Efficient Array Stores

Figure 3.10: Jython’s direct threaded interpreter vs. switch-based

Note that the original switch-based interpreter in Jython is also written in Java and can be

compiled by the Java compiler. However, the Java compiler can only see Jython’s interpreter

as a generic program and can not automatically apply interpreter specific optimizations to it.

On the other hand, Modular VM is able to recognize the hosted interpreter and automatically

transforms it to a more efficient one. As a result of the transformation, the performance of

instruction in the hosted interpreter increases significantly.

Our optimization also heavily optimizes array stores, another performance bottleneck in the

original interpreter. By eliminating type checks on array stores in the stack-based interpreter

written in Java, we see an additional 48% speedup in our experiments.

Comparison with Class File Compiler

As explained in Section 3.3.1, Jython uses a class file compiler as its higher tier execu-

tion strategy. The compiler translates Python programs to Java bytecode and let the Java

compiler to further compile it down to machine code subsequently. Figure 3.11 shows the

performance of our optimized interpreter normalized to that of Jython’s class file compiler.
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Figure 3.11: Jython’s direct threaded interpreter vs. class file compiler

On average, with efficient array stores enabled, the performance of our interpreter is 0.98×

compared to Jython’s compiler. Without efficient array stores, our interpreter is 34% slower

than Jython’s class file compiler.

Jython’s class file compiler, although marginally faster than our interpreter, is more expen-

sive to construct and maintain. Implementing a class file compiler that is custom to its source

language requires a thorough understanding not only on the source language but also many

details of the JVM. They need to find efficient ways to map their languages onto the Java

bytecode instruction set, and at the same time incorporate classic compiler optimizations

into their compilers. This process requires a costly effort from the host VM implementors

both initially and continuously.

Our optimizations on the other hand hides away many of the details of the JVM and how

to run interpreter efficiently on the JVM. We only require host VM implementers to apply

simple modifications to their existing baseline interpreter. As our experiments suggest our

solution provides comparable performance to the more costly solutions for the host VM

implementors.
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Chapter 4

ZipPy: A Fast Python 3 for the JVM

Abstract syntax trees, ASTs, are the simplest and most natural ways to implement pro-

gramming languages. They do not require an additional translation step that linearizes

ASTs produced by the parser to bytecode or other forms of internal representations. They

also lend themselves well to optimizations that are particularly beneficial to highly dynamic

languages like Python.

We present ZipPy1, a Python 3 implementation that is hosted on the JVM. ZipPy incor-

porates recent works on self-optimizing AST interpreters for the JVM. Our work however

focuses on high level guest language features that are distinct in Python and how well we

can fit them onto the existing optimizing AST interpreter framework.

4.1 Python on Truffle

In principle, “everything” can change at any moment in dynamic language programs. This

dynamic nature is the major impediment to ahead-of-time optimization. In practice, how-

1Publicly available at https://bitbucket.org/ssllab/zippy
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Figure 4.1: Python on Truffle

ever, programmers tend to minimize the rate of change, which makes the code highly pre-

dictable. Types, for instance, typically remain stable between successive executions of a

particular operation instance. Deutsch and Schiffman report that speculative type special-

ization succeeds 95% of the time in their classic Smalltalk-80 implementation [26].

Truffle is a self-optimizing runtime system that makes it easy to perform type specialization

for dynamic languages running on top of the JVM [99]. It allows language implementers to

implement their guest language by writing an AST interpreter using Java. An interpreter

written in this way enjoys low cost type specialization via automatic node rewriting [100,

18, 17]. AST node rewriting collects runtime type information, and speculatively replaces

the existing nodes with specialized and more efficient ones. Subsequently, Truffle just-in-

time compiles the specialized AST, written in Java, directly to machine code using the

underlying Java compiler. Upon a type mis-speculation, the specialized AST node handles

the type change by replacing itself with a more generic one. The node replacement triggers

deoptimization from the compiled code and transfers execution back to the interpreter. If

the re-specialized AST stays stable, Truffle can again compile it to machine code.

Our system, ZipPy, is a full-fledged prototype Python 3 implementation built atop Truffle.

It leverages Truffle’s type specialization feature and its underlying compilation infrastructure

(see Figure 4.1). This architecture helps ZipPy outperform Python implementations that

either do not exploit runtime type specialization or lack a just-in-time compiler. However,

Truffle has no knowledge about specific high level guest language semantics, like generators
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in Python. Further performance exploration of a guest language will mainly benefit from

better insights on distinct features of the language and making better use of the host compiler

based on those insights. In this thesis we focus on guest language level optimizations we

added to ZipPy.

ZipPy benefits from the Truffle framework in two ways. First, Truffle’s Java annotation based

domain specific language (DSL) greatly simplifies the implementation of type specialization

in dynamic languages like Python [52]. Second, Truffle bridges the gap between the hosted

AST interpreter and the underlying Java JIT compiler. It empowers the hosted interpreter

with the performance of a custom compiler without having the hosted VM implementers to

actually write a compiler. The end performance one could achieve on Truffle usually surpasses

that of a custom build class file compiler not to mention the upfront cost of building such

compiler.

However, Truffle cannot automatically optimize guest languages. It requires understandings

of the Java compiler internals to make better use of the framework. In this Chapter we

describe the design choices we made to retrofit the core part of the Python language onto

Truffle’s execution model.

4.2 Fast Arithmetics Via Type Specialization

Arithmetic operations are fundamental constructs of a programming language. It is chal-

lenging to implement efficient arithmetic operations in a dynamically typed language like

Python. In this Section, we explain how we utilize Truffle to enable fast arithmetics in ZipPy.
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Figure 4.2: Numeric types in ZipPy

4.2.1 Numeric Types

Numeric types are the most commonly used built-in types in Python. It is essential to

have efficient data representation for the built-in numeric types in Python. Figure 4.2(a)

illustrates the four numeric types in Python: booleans, integers, floating point numbers and

complex numbers. The figure also depicts type coercion rules between those types. Note

that the value range of an integer in Python 3 is unbounded.

All data in Python is an object. So are all the numbers. A straight-forward way to model

the built-in numeric types, which is similar to the one in CPython, is to implement them as

boxed Java objects. As shown in Figure 4.2(b), in the boxed representation ZipPy uses a

Java object to represent a Python number. The object boxes the actual value of the number

as a field. To preserve the unbounded integer semantics, a PInt uses a BigInteger field to

store its integer value (Figure 4.2(b)). For all the arithmetic operation nodes in ZipPy, we

specify the type specializations in the order that ensures the correct type coercion rules.

ZipPy uses another unboxed data representation for numbers to achieve fast arithmetic

operation. Essentially we map Python numeric types to Java primitive types when possible.

For instance, ZipPy initially uses a Java int to represent a Python int. It keeps the results
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abstract'class'NotNode'extends'CastToBooleanNode'{

''@Specialization
''boolean'doBool(boolean'operand)'{
''''return'!operand;
''}

''@Specialization
''boolean'doInteger(int'operand)'{
''''return'operand'=='0;
''}

''@Specialization
''boolean'doBigInteger(BigInteger'operand)'{
''''return'operand.compareTo(BigInteger.ZERO)'=='0;
''}

''@Specialization
''boolean'doDouble(double'operand)'{
''''return'operand'=='0;
''}

''@Specialization
''boolean'doString(String'operand)'{
''''return'operand.length()'=='0;
''}
''''''''
''@Specialization
''boolean'doPList(PList'operand)'{
''''return'operand.len()'=='0;
''}

''@Fallback
''boolean'doGeneric(PythonObject'operand)'{
''''return'!operand.__bool__();
''}
}

Figure 4.3: Implementation of NotNode in ZipPy

of all the arithmetic operations consuming the int remain unboxed, as long as the result

does not overflow. Object operations such as attribute access trigger lazy boxing that coverts

a number from its unboxed representation to the boxed one. To handle the unbound integer

semantics, ZipPy uses BigInteger to model integers with bigger values in addition to Java

primitive int.
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NotNode

NotBooleanNode

NotBigIntegerNode

NotDoubleNode

NotStringNode

NotPListNode

NotGenericNode

NotIntegerNode

NotUninitializedNode

Figure 4.4: Derivatives of NotNode in ZipPy

4.2.2 Applying Type Specializations

Truffle provides a Java annotation based source code generation engine. Hosted VM imple-

menters can use this engine to automatically generate type specialized derivatives for their

AST nodes. Derivative generation is an essential but tedious part of applying type special-

izations. Truffle’s code generation feature requires minimum boilerplate code from hosted

VM implementers, and allows them to focus on the other aspects of their work.

not is a unary arithmetic operation in Python. The operation evaluates the given expression

to a boolean value and returns the inversion of that value. Similar to other arithmetic opera-

tions, ZipPy implements not as a single AST node. Figure 4.3 illustrates the implementation

of the NotNode in ZipPy using Truffle’s DSL (simplified for brevity). Note that each method

annotated using @Specialization represents a type specialized derivative of the NotNode.

For instance, the method doInteger and doDouble implement the not operation for inte-

gers and floating point numbers. As explained in 4.2.1, we specialize against Java primitive

types instead of boxed representations of numeric types in Python for better performance.

28



@Fallback denotes the generic version of the not operand.

Truffle’s code generation engine produces the actual implementation of the derivative nodes.

Figure 4.4 shows the derivative classes produced by Truffle. It generates a class for each

method annotated with @Specialization in Figure 4.3. The derivative nodes perform node

rewriting based type specialization at runtime. As shown in Figure 4.1, a NotNode starts with

the uninitialized version. At runtime, the node rewrites itself to a derivative that matches

the type of the incoming operand. The rewrite follows the order of the classes shown in

Figure 4.4 from the top to the bottom. If no matching derivative is found, the node rewrites

to NodeGenericNode, which perform the generic routine for the not operation.

4.3 Efficient Data Representation for Composite Data

Types

Python provides a rich set of built-in composite data types including lists, tuples, sets,

and dicts. Jython simply uses the existing collection types in the Java development kit

(JDK) to implement these data types. This approach is straight-forward to implement but

adds runtime cost to the use of these data types. Java collection types only store elements

of reference type. When adding an unboxed premitive value to a Java collection, the JVM

performs an auto-boxing converting the primitive value to a boxed data type. Auto-boxing

ensures that every element in a collection is of reference type. This design simplifies garbage

collection in Java, since the garbage collector does not have to distinguish between reference

type and value type for members of collection types. However, auto-boxing involves heap

allocation and additional memory operations, and as a result it slows down accesses to

composite data types in Jython.
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4.3.1 Unboxed Sequence Storage

SequenceStorage

BasicSequenceStorage

IntSequenceStorage

DoubleSequenceStorage

EmptySequenceStorage

ObjectSequenceStorage

Figure 4.5: Sequence storage types in ZipPy

ZipPy employs more efficient data representations for Python composite or sequence data

types to avoid auto-boxing [15]. For example, Python programmers tend to use lists in a

homogeneous way meaning that elements of a list are usually of the same type. Therefore,

we can speculatively stores a list of integers, for instance, in a Java primitive int array to

avoid auto-boxing. In ZipPy, a list stores its elements in a SequenceStorage object that

dynamically switches between different concrete data representations. Figure 4.5 shows the

different SequenceStorage types used in ZipPy. As mentioned in the previous example, a

list of Python integers uses a IntSequenceStorage to store the integers in a Java primitive

int array assuming that the element types will stay the same. As long as the assumption

holds, ZipPy specializes the accesses to the integer list and avoids auto-boxing altogether.

Once the assumption becomes invalid, the list automatically converts its SequenceStorage

to the next matching type to preserve semantics.

4.3.2 Profiling-based List Literal Specialization

ZipPy enables the use of unboxed sequence storages by specializing Python list constructions.

More specifically we create type specialized derivatives for list constructor calls and list

literals. When a list literal creates a list that can use a more efficient sequence storage type,
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def$makeList(n):
$$lst$=$[]
$$for$i$in$range(n):
$$$$lst.append(i)
$$return$lst

Figure 4.6: List construction loop

we specialize it to a typed list literal. The specialized list literal always tries to create a list

using an unboxed sequence storage type.

However, some times the list construction site does not have enough information about the

elements going into the list at a later point. For instance, what we often see in Python

programs is a pattern similar to the code snippet shown in Figure 4.6. The shown program

first instantiates an empty list and then populates the list one element at a time using a

loop. The for range loop in Figure 4.6 appends integers to list lst, which ideally should use

an IntSequenceStorage to store its elements to avoid auto-boxing.

Figure 4.7 illustrates the simplified ASTs of the makeList function shown in Figure 4.6. The

AST labeled as 1 is the initial version with both the ListLiteralNode and ListAppendNode

uninitialized. If we simply specialize the ListLiteralNode base on type information avail-

able locally, we will replace it with an EmptyListLiteralNode (2A in Figure 4.7). The

EmptyListLiteralNode returns a list backed by an EmptySequenceStorage. Subsequently

the ListAppendNode in the loop body specializes itself to an IntStorageAppendNode and

switches the list’s storage to an IntSequenceStorage. The remaining iterations of the loop

does not introduce changes to the AST and populates the list using an efficient data represen-

tation. However, if makeList is invoked again, the above mentioned specializations will alter.

Note that the EmptyListLiteralNode always return a list using EmptySequenceStorage.

This storage type is not expected by the IntStorageAppendNode in the loop body and will

trigger a re-specialization that generalizes the list storage type to an boxed one. The reason

of this action is that the previous specialization to IntSequenceStorage become unstable.
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specialize)w/o)
profiling

final)
specialization

specialize)w/)
profiling

BlockNode

UninitListLiteralNode

ForNode

ReturnNode

UninitListAppendNode

loop$body

1

BlockNode

EmptyListLiteralNode

ForNode

ReturnNode

IntStorageAppendNode

loop$body

2A

BlockNode

ProfilingListLiteralNode

ForNode

ReturnNode

IntStorageAppendNode

loop$body

2B

BlockNode

IntListLiteralNode

ForNode

ReturnNode

IntStorageAppendNode

loop$body

3B

Figure 4.7: List literal specialization

Consequently, the node need to give up the current specialization, and rewrites itself to

the next matching derivative version. In short, the straight forward specialization can not

properly handle empty list instantiation.

Alternatively, we could add an intermediate step when specializing list literals. As shown in

Figure 4.7, ZipPy first specializes the UninitializedListLiteralNode in 1 to the Profili-

ngListLiteralNode in 2B. The ProfilingListLiteralNode keeps a reference to the list it

previously instantiated. Upon the second execution of function makeList, the ProfilingLis-

tLiteralNode rewrites itself by looking at the storage type of the previously created list.

It performs the final specialization to the derivative version that matches the previous list
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@Specialization
public/Object/doPRange(VirtualFrame/frame,/
///////////////////////PRangeIterator/range)/{
//int/start/=/range.getStart();
//int/stop/=/range.getStop();
//int/step/=/range.getStep();

//for/(int/i/=/start;/i/</stop;/i/+=/step)/{
////((WriteNode)/target).executeWrite(frame,/i);
////body.executeVoid(frame);
//}
//
//return/PNone.NONE;
}

Figure 4.8: For loop specialization for range iterators

assuming that the next list is most likely to have the same storage type. This step results

in the stable AST 3B shown in Figure 4.7. By using profiling based non-local type feed-

back, ZipPy is able to optimize list accesses for more complicated list construction pattern

in Python programs.

4.4 Control Flow Specializations

4.4.1 For Loop Specializations

For loops in Python are elegantly designed. Basically, any object with an iterable method or

a sequence can be consumed by a for loop. For statements in Python iterate over a sequence

of items, like a list or a string, in the order that they appear in the sequence. ZipPy models

Python control flow using Java control flow constructs. Naturally it uses Java loops to

construct for loops in Python. If we abstract a for loop in Python as an operation, the only

input operand of this operation is the sequence flowing into the loop. Evidently we could

apply type specializations on for loops like we did to the other operations in ZipPy.

Figure 4.8 shows a specialization we added to the ForNode for PRangeIterators in ZipPy. In
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Python the built-in range function generates an iterable containing arithmetic progressions

that can be used to iterate over a sequence of numbers. A for loop over a range iterator,

or a for range loop like the one shown in Figure 4.6, is the most common use of for loops

among Python programs. The doPRange method shown in Figure 4.8 completely unboxes

the incoming PRangeIterator into a few primitive integer indices. This approach effectively

lower the semantics level of a for range loop in Python to a straight-forward for loop in

Java. The for range specialization not only minimizes the loop overhead on the JVM, it also

enables more advanced loop optimizations like loop unrolling for the Java compiler. As a

result, for range loops in ZipPy enjoye optimal performance.

4.4.2 List Comprehensions

lst$=$[i**2$for$i$in$range(10)]

(a) original

lst$=$[]
for$i$in$range(10):
$$lst.append(i**2)

(b) desugared

Figure 4.9: List comprehensions

List comprehension provides a concise way to construct lists in Python. It allows expressing

the construction of a list from another sequence in one compact expression. Figure 4.9(a)

illustrates the use of list comprehension to create the list lst that consists of the square

of 0 to 9. Figure 4.9(b) shows the desugared equivalence of the shown list comprehension.

Note that we can always expand a list comprehension to an explicit loop that creates the

same list in Python. When parsing a list comprehension, ZipPy applies a similar desugaring

process as shown in Figure 4.9. It automatically expands the list comprehension to an AST

that is equivalent to what is shown in Figure 4.9(b). This transformation enables further

optimizations described previously in this section such as unboxed data representation for

the created list, proper type specialization and compiler optimizations of the expanded loop.
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In summary, list comprehension desugaring eliminates the performance overhead introduced

by the concise syntax of list comprehension, and enables efficient list creations in ZipPy.

4.5 Discussion

ZipPy is the first full-fledged Python 3 prototype running atop the Java virtual machine.

Our implementation applies type specialization using Truffle by replacing generic AST nodes

with type-specialized ones during execution. We also present efficient supports of composite

data types and loops that specifically benefit Python programs. The techniques we discussed

in this Chapter enables a performant basis that includes the imperative subset of the Python

language.
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Chapter 5

Generator Peeling

Generators offer an elegant way to express iterators. However, performance has always

been their Achilles heel and has prevented widespread adoption. We present techniques to

efficiently implement and optimize generators.

We have implemented our optimizations in ZipPy, a modern, light-weight AST interpreter

based Python 3 implementation targeting the Java virtual machine. Our implementation

builds on a framework that optimizes AST interpreters using just-in-time compilation. In

such a system, it is crucial that AST optimizations do not prevent subsequent optimizations.

Our system was carefully designed to avoid this problem. We report an average speedup of

3.58× for generator-bound programs. As a result, using generators no longer has downsides

and programmers are free to enjoy their upsides.

5.1 Motivation

Many programming languages support generators, which allow a natural expression of iter-

ators. We surveyed the use of generators in real Python programs, and found that among
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the 50 most popular Python projects listed on the Python Package Index (PyPI) [73] and

GitHub [37], 90% of these programs use generators.

Generators provide programmers with special control-flow transfers that allows function

executions to be suspended and resumed. Even though these control-flow transfers require

extra computation, the biggest performance bottleneck is caused by preserving the state of a

function between a suspend and a resume. This bottleneck is due to the use of cactus stacks

required for state preservation. Popular language implementations, such as CPython [76],

and CRuby [81], allocate frames on the heap. Heap allocation eliminates the need for cactus

stacks, but is expensive on its own. Furthermore, function calls in those languages are known

to be expensive as well.

In this thesis, we examine the challenges of improving generator performance for Python.

First, we show how to efficiently implement generators in abstract syntax tree (AST) inter-

preters, which requires a fundamentally different design than existing implementations for

bytecode interpreters. We use our own full-fledged prototype implementation of Python 3,

called ZipPy, which targets the Java virtual machine (JVM). ZipPy uses the Truffle frame-

work [99] to optimize interpreted programs in stages, first collecting type feedback in the

AST interpreter, then just-in-time compiling an AST down to optimized machine code. In

particular, our implementation takes care not to prevent those subsequent optimizations.

Our efficient generator implementation optimizes control-transfers via suspend and resume.

Second, we describe an optimization for frequently used idiomatic patterns of generator

usage in Python. Using this optimization allows our system to allocate generator frames to

the native machine stack, eliminating the need for heap allocation. When combined, these

two optimizations address both bottlenecks of using generators in popular programming

languages, and finally give way to high performance generators.

Summing up, our contributions are:
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def$producer(n):
,,for$i$in$range(n):
,,,,yield$i

for$i$in$producer(3):
,,print(i)

#"0,"1,"2

(a) Simple generator

g"=!producer(3)
try:
""while"True:
""""print(g.__next__())
except"StopIteration:
""pass

#"0,"1,"2

(b) Python iterator protocol

Figure 5.1: A simple generator function in Python

• We present an efficient implementation of generators for AST based interpreters that

is easy to implement and enables efficient optimization offered by just-in-time compi-

lation.

• We introduce generator peeling, a new optimization that eliminates overheads incurred

by generators.

5.2 Generators in Python

A generator is a more restricted variation of a coroutine [44, 67]. It encompasses two control

abstractions: suspend and resume. Suspend is a generator exclusive operation, while only

the caller of a generator can resume it. Suspending a generator always returns control to

its immediate caller. Unlike regular subroutine calls, which start executing at the beginning

of the callee, calls to a suspended generator resume from the point where it most recently

suspended itself. Those two operations are asymmetric as opposed to the symmetric control

transfer in coroutines.
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Generator Functions

In Python, using the yield keyword in a function definition makes the function a genera-

tor function. A call to a generator function returns a generator object without evaluating

the body of the function. The returned generator holds an execution state initialized using

the arguments passed to the call. Generators implement Python’s iterator protocol, which

includes a next method. The next method starts or resumes the execution of a gen-

erator. It is usually called implicitly, e.g., by a for loop that iterates on the generator (see

Figure 5.1(a)). When the execution reaches a return statement or the end of the generator

function, the generator raises a StopIteration exception. The exception terminates gener-

ator execution and breaks out of the loop that iterates on the generator. Figure 5.1(b) shows

the desugared version of the for loop that iterates over the generator object g by explicitly

calling next .

Generator Expressions

n"="3
g"=(x"for"x"in"range(n))
sum(g)
#"3

(a) Generator expression

def$_producer():
,,for$x$in$range(n):
,,,,yield$x

(b) Desugared generator function

Figure 5.2: A simple generator expression in Python

Generator expressions offer compact definitions of simple generators in Python. Generator

expressions are as memory efficient as generator functions, since they both create genera-

tors that lazily produce one element at a time. Programmers use these expressions in their

immediate enclosing scopes. Figure 5.2 shows a simple generator expression and its equiva-

lent, desugared generator function definition. A generator expression defines an anonymous

generator function, and directly returns a generator that uses the anonymous function defi-

39



nition. The returned generator encapsulates its enclosing scope, if the generator expression

references symbols in the enclosing scope (n in Figure 5.2). The function sum subsequently

consumes the generator by iterating on it in a loop and accumulating the values produced

by the generator.

Idiomatic Uses of Generators

for$i$in$generator(42):
..process(i)

(a) Generator loop

size%=%42
sum(x*2%for%x%in%range(size))

(b) Implicit generator loop

Figure 5.3: Idiomatic uses of generators

The idiomatic way of using generators in Python is to write a generator loop. As shown in

Figure 5.3(a), a generator loop is a for loop that calls a generator function and consumes

the returned generator object. The common use pattern of a generator expression is to use

it as a closure and pass it to a function that consumes it (see Figure 5.3(b)). The consumer

functions, like sum, usually contain a loop that iterates on the generator. Therefore, we refer

to this pattern as an implicit generator loop. Explicit and implicit generator loops cover

most of the generator usage in Python programs. Our generator peeling optimization, which

we explain in Section 5.4, targets these patterns.

5.3 Generators Using an AST Interpreter

Java, the host language of Truffle and ZipPy, does not offer native support for coroutines.

Our AST interpreter needs to model the semantics of generators. However, the conventional

way of implementing generators in a bytecode interpreter does not work in an AST setting.

In this section, we discuss the challenges of supporting generators in an AST interpreter,
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class%WhileNode%extends%PNode%{
%%protected%ConditionNode%condition;
%%protected%PNode%body;

%%public%Object%execute(Frame%frame)%{
%%%%try%{
%%%%%%while(condition.execute(frame))%{
%%%%%%%%body.execute(frame);
%%%%%%}
%%%%}%catch%(BreakException%e)%{
%%%%%%//%break%the%loop
%%%%}
%%%%return%PNone.NONE;
%%}
}

(a) Implementation of WhileNode

class%GenWhileNode%extends%WhileNode%{
%%private%final%int%flagSlot;

%%boolean%isActive(Frame%frame)%{%
%%%%return%frame.getFlag(flagSlot);%
%%}

%%void%setActive(Frame%frame,%
%%%%%%%%%%%%%%%%%boolean%value)%{%
%%%%frame.setFlag(flagSlot,%value);%
%%}

%%public%Object%execute(Frame%frame)%{
%%%%try%{
%%%%%%while(isActive(frame)%||%%%%%%
%%%%%%%%%%%%condition.execute(frame))%{
%%%%%%%%setActive(frame,%true)
%%%%%%%%body.execute(frame);
%%%%%%%%setActive(frame,%false);
%%%%%%}
%%%%}%catch%(BreakException%e)%{
%%%%%%setActive(frame,%false);
%%%%}
%%%%return%PNone.NONE;
%%}
}

(b) Implementation of GenWhileNode

Figure 5.4: Two different WhileNode versions

and present the solution we devised for ZipPy.

5.3.1 AST Interpreters vs. Bytecode Interpreters

The de-facto Python implementation, CPython, uses bytecode interpretation. It parses the

Python program into a linearized bytecode representation and executes the program using

a bytecode interpreter. A bytecode interpreter is iterative. It contains an interpreter loop

that fetches the next instruction in every iteration and performs its operation. The bytecode

index pointing to the next instruction is the only interpreter state that captures the current

location of the program. The interpreter only needs to store the program activation and the

last bytecode index when the generator suspends. When resuming, a generator can simply

load the program activation and the last bytecode index before it continues with the next
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instruction.

An AST interpreter on the other hand is recursive. The program evaluation starts from the

root node, then recursively descends to the leaves, and eventually returns to the root node.

In ZipPy, every AST node implements an execute method (see Figure 5.4). Each execute

method recursively calls the execute methods on its child nodes. The recursive invocation

builds a native call stack that captures the current location of the program. The interpreter

has to save the entire call stack when the generator suspends. To resume the generator

execution, it must rebuild the entire call stack to the exact point where it last suspended.

5.3.2 Generator ASTs

ZipPy stores local variables in a heap-allocated frame object. AST nodes access variables by

reading from and writing to dedicated frame slots. During just-in-time compilation, Truffle

is able to map frame accesses to the machine stack and eliminate frame allocations. However,

a generator needs to store its execution state between a suspend and resume. The frame

object must therefore be kept on the heap which prevents Truffle’s frame optimization.

In general, our AST interpreter implements control structures using Java’s control structures.

We handle non-local returns, i.e., control flow from a deeply nested node to an outer node

in the AST, using Java exceptions. Figure 5.5(a) illustrates the AST of a Python generator

function. We model loops or if statements using dedicated control nodes, e.g., a WhileNode.

The BlockNode groups a sequence of nodes that represents a basic block. The YieldNode

performs a non-local return by throwing a YieldException. The exception bypasses the

two parent BlockNodes, before the FunctionRootNode catches it. The FunctionRootNode

then returns execution to the caller.
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FunctionRootNode

ParametersNode

BlockNode

WhileNode

ConditionNode

BlockNode

YieldNode

StatementNode[2]

parameters

body

condition

StatementNode[0]

body

(a) Before translation

GenFunctionRootNode

ParametersNode

GenBlockNode

GenWhileNode

ConditionNode

GenBlockNode

YieldNode

parameters

body

condition

StatementNode[0]

body

StatementNode[2]

(b) Translated

Figure 5.5: Translation to generator AST

Generator Control Nodes

Every control node in ZipPy has a local state stored in the local variables of its execute

method. The local state captures the current execution of the program, for instance, the

current iterator of a for loop node or the current node index of a block node. To support

generators we decide to implement an alternative generator version for each control node.

These control nodes do not rely on local state, and keep all execution state in the frame.

However, it is overly conservative to use generator control nodes everywhere in a generator

function. We only need to use generator control nodes for the parent nodes of YieldNodes,

since a yield operation only suspends the execution of these nodes.

Figure 5.4(a) shows the implementation of a WhileNode. Note that the loop condition

result is a local state of the node stored in the call stack of its execute method. When

a YieldException is thrown somewhere in the loop body, it unwinds the call stack and

discards the current loop condition result. When the generator resumes, it will not be able
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to retrieve the previous loop condition result without re-evaluating the condition node.

The re-evaluation may have side effects and violate correct program behavior. Therefore,

this implementation only works for normal functions but not for generator functions.

Figure 5.4(b) shows the generator version of the WhileNode, the GenWhileNode. It keeps

an active flag, a local helper variable, in the frame. The execute method accesses the flag

by calling the isActive or setActive method. When a yield occurs in the loop body, the

active flag remains true. When resuming, it bypasses the condition evaluation and forwards

execution directly to the loop body.

Note that it is incorrect to store the active flag as a field in the GenWhileNode. Different

invocations of the same generator function interpret the same AST, but should not share

any state stored in the AST. An alternative way to implement a GenWhileNode is to catch

YieldExceptions in the execute method and set the active flag in the catch clause. This

implementation requires the GenWhileNode to re-throw the YieldException after catching

it. If we implement generator control nodes in this way, a yield operation will cause a chain

of Java exception handling which is more expensive than the solution we chose.

Similar to the GenWhileNode, we implement a generator version for all the other control

nodes in ZipPy. Every generator control node has its own active flags stored in the frame.

The descriptions of the generator control nodes are as follows:

• GenFunctionRootNode: Stores an active flag in the frame. Only applies arguments

when the flag is false. Resets the flag and throws StopIteration exception upon

termination of the generator.

• GenBlockNode: Stores the current node index in the frame. Skips the executed nodes

when the index is not zero. Resets the index to zero upon exit.

• GenForNode: Stores the current iterator in the frame. Resets the iterator to null upon
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exit.

• GenIfNode: Similar to GenWhileNode, uses an active flags to indicate which branch is

active.

• GenWhileNode: See Figure 5.4(b).

• GenBreakNode: Resets active flags of the parent control nodes up to the targeting loop

node (the innermost enclosing loop), including the loop node.

• GenContinueNode: Resets active flags of the parent control nodes up to the targeting

loop node, excluding the loop node.

• YieldNode: Must be a child of a GenBlockNode. Evaluates and stores the yielding

value in the frame before throwing the YieldException. The root node then picks

up the value and returns it to the caller. The YieldNode also advances the statement

index of its parent BlockNode to ensure that the generator resumes from the next

statement.

Control Node Translation

ZipPy first parses Python functions into ASTs that use the normal control nodes. Generator

functions require an additional translation phase that replaces the normal control nodes

with their generator equivalents. Figure 5.5 illustrates this translation. We only replace the

control nodes that are parents of the YieldNodes, since these nodes fully capture the state

required to suspend and resume execution.

The translated generator AST always keeps a snapshot of its execution in the frame. When

resuming, it is able to retrieve all the necessary information from the snapshot and rebuild

the entire interpreter call stack to the exact point where it left off.
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The flag accesses in the generator control nodes and the exception based control flow handling

add performance overheads. However, the underlying compiler is able to compile the entire

generator AST into machine code. It also optimizes control flow exceptions and converts

them to direct jumps. The jumps originate from where the exception is thrown and end

at the location that catches it. The AST approach, enforced by the underlying framework,

does add complexity to the implementation of generators. However, the performance gains

offset this slight increase of the implementation effort.

Yield as an Expression

x"="foo()"+"(yield&i*2)

_tmp"="foo()
x"="_tmp"+"(yield&i*2)

extract 
statement

(a) Yield expression

MulNode

GenBlockNode

YieldNode

YieldSendValueNode

ConstantNode(2)

yield

resume

(b) Translated multiply

Figure 5.6: Translation of a yield expression

Python allows programmers to use yield in expressions. A yield expression returns a value

passed from the caller by calling the generator method send. This enhancement allows the

caller to pass a value back to the generator when it resumes, and brings generators closer to

coroutines. However, it requires generator ASTs to be able to resume to a specific expression.

Figure 5.6(a) shows an example of yield expressions. The assignment statement to variable

x consumes the value returned by the yield expression. Figure 5.6(b) shows the trans-

lated AST of the multiplication sub-expression. Note that we translate the yield expres-

sion to a GenBlockNode containing a YieldNode and a YieldSendValueNode. When the

YieldNode suspends execution, it advances the active node index of the parent GenBlockNode
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to point to the next node. This action ensures that the generator restarts execution from

the YieldSendValueNode, which returns the value sent from the caller.

In a more complicated case, the statement consuming the yield expression could contain sub-

expressions with a higher evaluation order. In other words, the interpreter should evaluate

these expressions before the yield expression. Some of them could have side effects, i.e.,

the call to foo in Figure 5.6(a). To avoid re-evaluation, we convert such expressions into

separate statements and create variables to store the evaluated values. When the generator

resumes, it picks up the evaluated values from the variables without visiting the expression

nodes again.

5.4 Optimizing Generators with Peeling

Generator peeling [102] is an AST level speculative optimization that targets the idiomatic

generator loop pattern. It transforms the high level generator calling semantics to lower level

control structures and eliminates the overheads incurred by generators altogether.

5.4.1 Peeling Generator Loops

l"="[]
for$i$in$fib(10):
""if"i"%"2"=="0:
""""l.append(i)

def$fib(n):
""a,"b"="0,"1
""for$i$in$range(n):
""""a,"b"="b,"a+b
""""yield$a

1

234

5
generator(bodygenerator(loop

Figure 5.7: Program execution order of a generator loop

Figure 5.7 shows a generator loop (left) that collects even numbers among the first ten

Fibonacci numbers generated by fib (right) into the list l. For each iteration in the loop,

the program performs the following steps:
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1. Call next on the generator and resume execution.

2. Perform another iteration in the for range loop to compute the next Fibonacci number.

3. Return the value of a to the caller and assign it to i.

4. Execute the body of the generator loop.

5. Return to the loop header and continue with the next iteration.

Among those steps listed above, only step two and four perform the actual computation.

Steps one and three are generator specific resume and suspend steps. They involve calling

a function, resuming the generator AST to the previous state and returning the next value

back to the caller. Those generator specific steps add high overhead to the real work in the

generator loop.

The most common and effective technique for optimizing function calls is to inline callees into

callers. However, traditional function inlining does not work for generators. The desugared

generator loop (similar to the one shown in Figure 5.1(b)) includes two calls: one to the

generator function fib and another one to the next method. The call to fib simply

returns a generator object during loop setup, and is not performance critical. Inlining the

call to next requires special handling of yields rather than treating them as simple returns.

An ideal solution should handle both calls at the same time, while still preserving semantics.

Observe that the generator loop always calls next on the generator unless it terminates.

If the generator loop body was empty, we can replace the loop with the generator body of

fib and still preserve semantics. Furthermore, assuming the above mentioned replacement

is in-place, for the non-empty loop body case, we can replace each yield statement with the

generator loop body. Figure 5.8 illustrates this transformation. The solid arrow depicts the

generator loop replacement that “inlines” the generator body. The dashed arrow shows the

yield replacement that combines the generator code and the caller code.
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def$fib(n):
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((for$i$in$range(n):
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((((yield$a
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for$i$in$fib(10):
((if(i(%(2(==(0:
((((l.append(i)

generator(body
loop(body

Figure 5.8: Peeling transformation

l"="[]
n"="10
a,"b"="0,"1
for$i$in$range(n):
""a,"b"="b,"a+b
""i"="a
""if"i"%"2"=="0:
""""l.append(i)

2

3

4
5

generator(body

loop(body

1

Figure 5.9: Transformed generator loop

Figure 5.9 shows the pseudo-code of the transformed program. We combine the generator

body and the loop body in the same context. The original call to the generator function fib

translates to the assignment to n which sets up the initial state of the following generator

body. The generator body replaces the original generator loop. We simplify the yield

statement to a single assignment. The assignment transfers the value of a from the generator

body to the following loop body. The loop body in turn consumes the “yielded” value of i.

The transformation peels off the generator loop, and removes both calls, to fib and next .

The optimized program does not create a generator object. It eliminates the step one and

simplifies the step three shown in Figure 5.7. These two steps do not contribute to the real

computation. The numbers on the right of Figure 5.9 denote the corresponding execution

steps of the original generator loop shown in Figure 5.7. The two assignments preceding the

transformed generator body and the loop body (grayed in Figure 5.9) preserve the correct

data flow into and out of the generator code.

We simplified the pseudo code shown in Figure 5.9 for clarity. Our transformation is not
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Figure 5.10: Peeling AST transformation

limited to the case where the call to the generator function happens at the beginning of the

consuming loop. If the creation of the generator object happens before the loop, we apply

the same transformation that combines the generator body with the loop body. We explain

the actual AST transformation in more detail in Section 5.4.2.
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5.4.2 Peeling AST Transformations

Figure 5.10(a) shows the AST transformation of our Fibonacci example. The upper half of

the figure shows the AST of the generator loop. The AST contains a CallGenNode that calls

the generator function fib, and returns a generator object to its parent node. The parent

ForNode representing the for loop then iterates over the generator. The lower half of the

figure shows the AST of the generator function fib. Note that the generator body AST uses

generator control nodes and includes the YieldNode that returns the next Fibonacci number

to the caller.

The figure also illustrates the two-step peeling AST transformation. First we replace the

ForNode that iterates over the generator with the AST of the generator body. Second, we

clone the AST of the loop body and use it to replace the YieldNode in the generator body.

Figure 5.10(b) shows the result of the transformation. We use a PeeledGenLoopNode to guard

the transformed generator body. The PeeledGenLoopNode receives the arguments from the

ArgumentsNode and passes them the transformed generator body. The FrameTransferNode

transfers the Fibonacci number stored in the variable a to the following loop body (equivalent

to step three in Figure 5.9). The transformed loop body in turn consumes the “yielded”

number.

ZipPy implements a number of different versions of PeeledGenLoopNode to handle differ-

ent loop setups. For instance, a generator loop could consume an incoming generator ob-

ject without calling the generator function at the beginning of the loop. The transformed

PeeledGenLoopNode in this case guards against the actual call target wrapped by the in-

coming generator object and receives the arguments from the generator object.
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Figure 5.11: Handling of polymorphic generator loop

5.4.3 Polymorphism and Deoptimization

ZipPy handles polymorphic operations by forming a chain of specialized nodes with each

node implementing a more efficient version of the operation for a particular operand type.

The interpreter then dispatches execution to the desired node depending on the actual type

of the operand. Like other operations in Python, the type of the iterator coming into a loop

can change at runtime. A loop that iterates over multiple types of iterators is a polymorphic

loop.

Generator peeling is a loop specialization technique that targets generators, a particular kind

of iterators. ZipPy handles polymorphic loops by forming a chain of specialized loop nodes

including PeeledGenLoopNodes. A PeeledGenLoopNode checks the actual call target of the

incoming iterator before it executes the optimized loop. As shown in Figure 5.11, if the

target changes, then the execution falls through to the original loop node. ZipPy is able to

apply an additional level of the generator peeling transformation for the new iterator type

if it happens to be a generator as well.

However, forming a polymorphic chain that is too deep could lead to code explosion. If the

depth of the chain goes beyond a pre-defined threshold, ZipPy stops optimizing the loop

and replaces the entire chain with a generic loop node. The generic loop node is capable of
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handling all types of incoming iterators but with limited performance benefit.

5.4.4 Frames and Control Flow Handling

The AST of the optimized generator loop combines nodes from two different functions and

therefore accesses two different frame objects. Programmers can use non-local control flows

such as breaks or continues in a generator loop body. We explain how to handle frames

and such control flows in the rest of this section.

Frame Switching

The transformed AST illustrated in Figure 5.10(b) accesses two frames: the caller frame and

the generator frame. Figure 5.12 shows the layouts of the two frames. The nodes belonging

to the caller function read from and write to the caller frame to access its local variables. The

generator body nodes do so through the generator frame. The PeeledGenLoopNode allocates

the generator frame and passes it to the dominated generator body. To enable caller frame

access in the deeply nested loop body, the node also passes over the caller frame. Therefore,

in the sub-tree dominated by the PeeledGenLoopNode, both frames are accessible.

0:    l

1:    i

0:    n

1:    a

2:    b

3:    i

caller&frame generator&frame

yield

Figure 5.12: The caller and generator frame objects of the Fibonacci example

Although keeping both frames alive and accessible, the interpreter picks one frame object as

the current frame and retains the other one as the background frame. It passes the current

frame to every execute method of the AST nodes as an argument for faster access. The
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current frame stores a reference to the background frame. The accesses to the background

frame require one more level of indirection.

In the generator body shown in Figure 5.10(b), the interpreter sets the generator frame as

the current frame. The FrameTransferNode propagates the values of a in the generator

frame to i in the caller frame. This value propagation corresponds to step 3 in Figure 5.7

and Figure 5.9. The following FrameSwitchingNode swaps the positions of the two frames

and passes the caller frame as the current frame to the dominated loop body.

Truffle’s underlying JIT compiler optimizes frame accesses. It eliminates frame allocations

as long as references to the frame object are not stored on the heap. A generator stores its

execution state by keeping a frame object reference on the heap. Therefore, the generator

AST introduced in Section 5.3.2 prevents this frame optimization. After generator peeling,

however, the program does not create and iterate over generators. It is not necessary to adopt

generator control nodes in the “inlined” generator body and store frame object references

on the heap. As a result, the compiler can successfully optimize frame accesses in the

transformed generator loop regardless of the number of frames.

For generator functions containing multiple yields, we apply the same transformation to

each YieldNode. The resulting AST contains more than one loop body, hence multiple

FrameSwitchingNodes. We rely on the control-flow optimizations of the underlying compiler

to minimize the cost of this replication.

Merging both frames could also guarantee correct frame accesses in the transformed AST.

However, this approach is more complicated. Merging frames combines the allocations of

both frames, which requires redirecting all frame accesses to the combined frame. Upon

deoptimization, we need to undo the merge and redirect all frame accesses back to their

separate frames. This process become more complex for the nested generator loop scenario

which we explain more in Section 5.4.6. Since the underlying compiler is able to optimize
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Figure 5.13: Complex control flow handling

multiple frame objects, merging frames does not produce faster code.

Breaks and Continues

ZipPy implements break and continue statements using Java exceptions. A BreakNode

throws a break exception, and then a parent node catches the exception. The control flow

exception skips all the nodes between the throwing node and the catching node. The location

of the catch clause determines what the exception can skip. Figure 5.4(b) shows the catch

clause in a GenWhileNode. The node catches the break exception after the while loop, hence

the exception breaks the loop. Similarly, a continue exception caught in the loop body quits

the current iteration and continues with the next iteration. There are no labeled break

or continue statements in Python. Thus, a control flow exception does not go beyond its

enclosing loop. Furthermore, we can extract the exception catch clauses to dedicated nodes

to construct more complicated control structures.
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A generator loop body may contain break or continue statements that target the gener-

ator loop. Generator peeling replaces the generator loop and embeds the loop body in-

side the generator body. To properly handle breaks in the loop body, we interpose a

BreakTargetNode between the caller and the generator body as shown in Figure 5.13(a). The

nested BreakNode throws a dedicated break exception to skip the generator body, before it

reaches the BreakTargetNode. After catching the exception, the BreakTargetNode returns

to its parent and skips the rest of the generator loop. We handle continues by interposing a

ContinueTargetNode between the loop body and the generator body (see Figure 5.13(b)).

A continue exception skips the rest of the nodes in the loop body and returns execution to

the generator body. This control flow is equivalent to what a continue does in the original

generator loop, that is resuming the generator execution from the statement after the last

yield.

The above mentioned interposition is only necessary when the optimized loop body contains

break or continue statements. As we explained in Section 5.3.2, the underlying compiler

optimizes control-flow exceptions into direct jumps. Therefore, the exception-based control

handling has no negative impact on peak performance.

5.4.5 Implicit Generator Loops

An implicit generator loop consists of a generator expression that produces a generator, and

a function call that consumes the generator. ZipPy applies additional transformation on

implicit generator loops to enable further optimizations such as generator peeling.

Figure 5.14 illustrates this two-step process. First, we inline the function sum to expose the

loop that consumes the generator (see Figure 5.14(b)). The inlining step triggers an escape

analysis of all the generator expressions in the current scope. If our analysis finds a generator

expression such that the generator it produces does not escape the current scope and a
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Figure 5.14: Implicit generator loop transformation

generator loop that consumes the produced generator exists, ZipPy desugars the expression

to a generator function (see Figure 5.14(c)). Note that the desugared generator function

redirects the references to the enclosing scope to the argument accesses in the local scope.

This redirection eliminates non-local variables in the generator expression and allows the

compiler optimization for the enclosing frame. The desugaring also replaces the generator

reference in the inlined loop to a function call. The transformation exposes the explicit

generator loop that we can optimize using generator peeling.

One obstacle when optimizing an implicit generator loop is that the function consuming the

generator can be a Python built-in function. Programmers can use any built-in function

that accepts iterable arguments in an implicit generator loop. Table 5.1 lists all the Python
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3 built-in functions that accept iterables and divides them into three different categories:

1. Implement in 2. Synthesize to loop 3. No loop
Python

all, any bytes iter

bytearray dict next

enumerate frozenset

filter, list set

map, max tuple

min, sorted
sum, zip

Table 5.1: Python Built-in functions that accept iterables

1. Implement in Python: Convenience functions that one can write in pure Python.

ZipPy implements these functions using Python code. They share the same inlining

approach with user defined functions.

2. Synthesize to loop: Constructors of immutable data types in Python. Cannot be

written in pure Python without exposing internal data representations of the language

runtime. The current solution is to speculatively intrinsify the built-in call by replacing

the call node with a synthesized AST. The synthesized AST contains the generator loop

and constructs the desired data type. The intrinsified call site exposes the generator

loop and enjoys the same peeling optimization.

3. No loop: Contains no loop. We exclude them from the optimization.

5.4.6 Multi-level Generator Peeling

ZipPy relies on the tiered execution model of the underlying framework. It starts executing

a Python program in interpretation mode. The interpreter collects runtime information and

inlines function calls that are hot. We apply function inlining using an inlining budget. This
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Figure 5.15: Multi-level generator peeling

budget helps to prevent code explosions caused by inlining too many calls or too big a callee.

We perform generator peeling when a generator function call becomes hot, and possibly bail

out if the transformation did not succeed. Generator peeling shares its budget with function

inlining. If a generator peeling transformation is going to overrun the inlining budget, ZipPy

aborts the transformation. After exhausting all possible inlining and peeling opportunities,

Truffle compiles the entire AST into machine code. All subsequent calls to the compiled

function execute at peak performance.

An optimized generator loop might include another generator loop. We call these cases

nested generator loops. Python programs can contain arbitrary levels of nested generator

59



loops. Our optimization is capable of handling multiple levels of nested generator loops by

iteratively peeling one loop layer at a time. It requires minimal modifications to our existing

algorithms to handle this scenario.

Figure 5.15 shows the AST of three nested generator loops after peeling transformations. In

a simple case, an optimized generator loop consists of two parts: the inlined generator body

and the embedded loop body. To illustrate the relationships between these two program

regions, we simplify the structure of the AST by using one node for each program region.

A numbered solid circle denotes a generator body, and a numbered dashed circle denotes a

loop body. An “inlined” generator body node is always associated with a loop body node as

its immediate child. As shown in Figure 5.15, the first level peeling results in node one being

the generator body and node two being the loop body. The second level peeling includes two

optimized generator loops with nodes three and four extended from the generator body and

nodes five and six extended from the loop body. Note that at any level in the tree, a next

level peeling can either extend from the generator body or the loop body of the current level.

More complicated cases recursively repeat the same tree structure as shown in Figure 5.15.

Therefore, a working solution for the shown tree structure automatically extends to more

complicated cases.

The tree shown in the figure adheres to the following rules: Since it is a tree, every node

only has one parent except the root node. Every solid node has an associated dashed node

as its child but possibly not the only child. Every dashed node has an associated solid node

as its only parent. Every dashed node must have one and only one grandparent.

The arrows in Figure 5.15 depict the desired frame and control-flow handling. Every dashed

node receives two frames: one from its parent and another one from its grandparent. Since

every dashed node has a unique parent and a unique grandparent, there it no ambiguity on

which two frames it receives. A continue returns from a dashed node to its associated solid

node. Since the associated solid node is its only parent, no node can intercept this control-
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flow. Our existing algorithms therefore automatically cover frame handling and continue

statements for nested generator loops.

Break statements are more complicated. A break returns from a dashed node to its grand-

parent. However, its solid parent node may be the break target of another node and intercept

the break exception. For instance, node one in the figure might catch the break exception

thrown in node two or node four. This ambiguity may cause an incorrect break from node

two. To resolve this issue, we need to label the overlapping break exceptions to filter out

undesired ones. Since it is rare to have two nested generator loops that both use breaks, we

consider this scenario as a corner case.

In summary, our peeling transformation is able to handle arbitrary levels of nested generator

loops.
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Chapter 6

Optimizing Object Model and Calls

Python is an object oriented programing language. It is a common practice for programmers

to encapsulate state and logic using classes in Python programs. As an implementation of

the Python language, it is essential for us to ensure the performance of object operations

and method calls in ZipPy. In the previous chapters we discussed how we optimize arith-

metics (Chapter 4) and accelerate iterators (Chapter 5). In this chapter we explain how we

implement object operations and calls in ZipPy.

6.1 Object Model

6.1.1 Python Object Data Representations

In Python all data is an object. CPython, the original implementation of Python, constructs

every data type in Python as a heap allocated data structure. Since it is written in C,

CPython implements Python built-in data types using C struct and user defined types

using hash maps. This model results in expensive arithmetic operations due to frequent
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accesses and allocations of data structures in the heap. Hash map based object model is also

inefficient. Although the cost of hash map operations is amortized for large data sets, the

overhead of retrieving or updating a single map entry is still expensive. In a hash map based

object model, retrieving the value of an object field, or an object attribute in Python, is

equivalent to reading the value of a map entry. This operation involves a hashing calculation

and a few steps of memory accesses before reaching the memory address that stores the target

value. On the other hand, in a traditional programming language like Java, an object field

access, if optimized, is simply a single memory read. In summary, object model inefficiency

is the main impediment to the performance of popular dynamic languages like Python.

Jython’s Object Model Design

Existing JVM based Python implementations like Jython, however, replicate the same object

model design we saw in CPython. The main approach they took is porting the existing design

from C to Java hoping that the underlying Java compiler will magically optimize it. This

approach failed to realize that, although, the Java JIT compiler is powerful, its strength is in

compiling and optimizing programs written in Java, the first class citizen of the JVM. Hence,

without additional knowledge to the guest language, the Java compiler is unable to address

the miss match between the object model of the guest language and Java in an efficient way.

A more efficient solution requires identifying the strengths of the Java compiler and mapping

critical components of the guest language onto efficient constructs offered of the JVM. In the

rest of this Section, we describe how we close the gap between the object models of Python

and the JVM in ZipPy.
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Figure 6.1: Three data representations for Python objects

Multiple Data Representations

ZipPy internally uses multiple data representations to model Python objects. Figure 6.1

illustrates this design scheme. The descriptions of each data representation are as follows:

1. Built-in numeric types ZipPy, as explained in Chapter 4.2, models some built-in

numeric types, like bool, int and float, using Java primitives. This approach helps

to achieve Java level performance for arithmetic operations in ZipPy. We refer types

that has a Java primitive representation as unboxable. Each unboxable numeric type in

ZipPy has a corresponding boxed representation using Java objects as a fall-back. As

shown in the Figure, a boxing operation will convert an instance of unboxable type,

e.g., int, from its Java primitive representation to the boxed one.

2. Built-in immutable types Similar to Jython, we implement Python built-in types

including numeric types as regular Java classes. In this way we map Python’s built-

in type hierarchy onto a Java class based type hierarchy. Unlike custom types, all

built-in types in Python are immutable meaning that user program cannot modify the

attributes of an instance of a built-in type. We take advantage of this immutability by

modeling Python built-in types directly using Java classes on the JVM.

3. Custom mutable types All custom or user defined types in Python are mutable.

That includes Python modules, custom type definitions written in Python and in-

stances of custom classes. We model them using still a regular Java object, an in-

stance of PythonObject in ZipPy, to circumvent the performance overhead incurred
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by using a hash map. ZipPy maps Python attribute accesses to field accesses on the

PythonObject object. We support attribute modifications by maintaining an object

layout table for each Python object. The object layout table keeps track of the memory

offset for each attribute that is currently stored on the object. We will discuss how we

support attribute modifications on custom types in more detail in Section 6.1.3.

Although we model Python objects using different physical data representations, our ap-

proach preserve the semantics that every data in Python is an object. ZipPy support object

like operations on each of the data representations described above. What differs our ap-

proach to the existing ones is that we do not treat all Python data types in the same way. We

try to pick the most efficient construct offered by the JVM that is suitable for implementing

particular types in Python. To be more specific, modeling Python numbers as Java prim-

itives enables the best arithmetics performance achievable on the JVM. Using Java object

to model Python object brings the opportunity for ZipPy to close the performance gap of

object operations between existing implementations of Python and Java.

6.1.2 Attribute Resolutions

Each object in Python is a collection of key value pairs. Each key value pair is an attribute

of the object with the key being the symbol of the attribute. The value of an attribute is

essentially another Python object. Like other dynamic languages, Python allows program-

mers to reference, add or delete attributes on an object. Attribute referencing follows a rule

referred as method resolution order in Python. Upon the creation of a custom type or class

in Python, the interpreter calculates a linearized list of types for the newly created type.

Each type in the list is a super type of the new type. The method resolution order of the

new type refers to the order its super types appear in the linearized list. Given the method

resolution order, an attribute resolution on a Python object follows the following steps:
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Figure 6.2: Attribute resolution for different data representations

1. Lookup the attribute from the object itself. If it does not exist on the object, continue

with the next step.

2. Obtaining the class object of the original object through the class attribute of the

object. Lookup the attribute from the class object. If failed, continue with the next

step.

3. Obtaining the bases of the object’s class through the bases attribute of the class

object. Lookup the bases types in the method resolution order until the attribute is

found. Otherwise, if the interpreter fail to resolve the attribute in the end, it throws

an AttributeError.

Since ZipPy uses multiple data representations to model Python objects, we also need to

implement the above mentioned attribute resolution differently for each representation. Fig-

ure 6.2 illustrates this process for the three different data representations used in ZipPy. For

simplicity, we model all class objects using a mutable PythonObject. Each PythonObject

stores the reference to the next node in the lookup chain as a dedicated field ( class

and bases ). This choice makes the type hierarchy of mutable objects consistent, since

66



every node on the lookup chain is a PythonObject. Similarly, built-in types modeled using

immutable Java objects connect to the rest of the lookup chain also use a reference stored

in a dedicated field. For unboxed built-in types, we uses a preprocessed mapping table to

associate the Java class of the primitive type to the class object representing its Python

type. For instance, we model a Python integer, which is an instance of the Python int class,

using a Java primitive int. However, we model the Python int class object itself, which is

an instance of the class type, using a mutable Java object. The mapping table maps the

Java class of primitive int to the Python int class object, and thus completes the entire

lookup chain for unboxed built-in types.

6.1.3 Modeling Custom Mutable Types

Python allows programmers to add, modify or delete attributes on an object during the

execution of the program. On the other hand, a Java object is fixed. You can modify

the value of a field, but cannot resize or change the layout of an object. We support this

dynamic feature of Python by implementing each Python object using a combination of a

fixed PythonObject and a re-sizable object layout.

Figure 6.3 shows an implementation of PythonObject in ZipPy. Each PythonObject has a

fixed number of fields of both primitive and reference types to accommodate its attributes.

Each field on the object is a location. The object stores each of its attribute on a dedicated

location. ZipPy tries to store an unboxed attribute in an unboxed location to avoid the

overhead of boxing. For instance, it tries to store a Java int in an int field when possible.

If all int fields are taken, it tries to stores the attribute in an boxed location or an object

field. If no in-object location is available anymore (taken by other attributes), ZipPy will

spill the incoming attribute to be stored in the additional object array (field objectArray

in Figure 6.3). The additional object array gives the fixed PythonObject the ability to store
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class%FixedPythonObjectStorage%extends%PythonObject%{

%%%%static%final%int%INT_LOCATIONS_COUNT%=%5;
%%%%protected%int%primitiveInt0;
%%%%protected%int%primitiveInt1;
%%%%protected%int%primitiveInt2;
%%%%protected%int%primitiveInt3;
%%%%protected%int%primitiveInt4;

%%%%static%final%int%DOUBLE_LOCATIONS_COUNT%=%5;
%%%%protected%double%primitiveDouble0;
%%%%protected%double%primitiveDouble1;
%%%%protected%double%primitiveDouble2;
%%%%protected%double%primitiveDouble3;
%%%%protected%double%primitiveDouble4;

%%%%static%final%int%OBJECT_LOCATIONS_COUNT%=%5;
%%%%protected%Object%fieldObject0;
%%%%protected%Object%fieldObject1;
%%%%protected%Object%fieldObject2;
%%%%protected%Object%fieldObject3;
%%%%protected%Object%fieldObject4;

%%%%protected%Object[]%objectsArray%=%null;

%%%%public%FixedPythonObjectStorage(PythonClass%pythonClass)%{
%%%%%%%%super(pythonClass);
%%%%}
}

Figure 6.3: The implementation of PythonObject
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more attributes than its own capacity by paying the price of another level of direction and

possibly auto-boxing.

An object layout attached to a PythonObject keeps track of the list of attributes stored on

the object as well as the location of each attribute. It is essentially a table that maps the

symbol of an attribute to its location. The table records modifications made dynamically

to the attributes of the object. Figure 6.4 illustrates how this process works by using a

hypothetical Python object. The layout of the shown object goes through the following

stages:

1. The object initially has one attribute ham stored in location 0 with the value 42.

2. After adding the attribute egg, the object now has both ham and egg stored in location

0 and 1 respectively.

3. Since both in-object locations are taken, the object stores the new attribute spam in

the spill array at the index 0. The rest of the layout remain unchanged.

4. The deletion of egg frees location 1 on the object. The object reassigns the newly

available in-object location to spam to make sure that location assignments are optimal.

It also update the layout table to reflect the new changes.

We simplified the structure of the Python object shown in Figure 6.4 for brevity. The actual

algorithm for a layout update is more complicated. Adding or deleting an attribute triggers a

layout update. The layout update tries to stores as many unboxed attributes in an unboxed

location as possible. The spill array allocation is lazy so that we only allocate the array

when necessary. During the layout update, ZipPy calculates the size of the additional spill

array needed to accommodate all the attributes. If it requires a spill array, we conservatively

allocate an array that is just enough to store all the attributes.
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In Python, attribute types can change at runtime. An attribute type change also triggers

a layout update. Our current solution to handle such a type change is to assign a location

that matches the most generic type of the attribute. Once an unboxed attribute becomes

boxed, we always assign a boxed location for this attribute in the future.

Our approach uses PythonObjects simply as a physical storage for the attributes of a Python

object. We detach the layout description of the Python object from its storage component.

This approach gives us the freedom to customize the behavior of attribute accesses in ZipPy

without being restricted by Java’s own object model. Since we model class objects in the

same way as we do for regular objects in Python, they enjoy the same potential performance

benefit achieved by this design.

6.1.4 Inline Caching for Attribute Accesses

As explained in Section 6.1.3, the layout table stores the location of object attributes. Ac-

cessing an attribute requires looking up its location information from the layout table and

then performing a memory read or write at the obtained memory location. Since we imple-

ment the layout table using a hash map, the cost of accessing the table is as expensive as

attribute accesses on a hash map based object. However, ZipPy optimizes attribute accesses

by caching attribute locations after a full layout table lookup. This technique, inspired by

previous research on virtual machines [26, 46, 18], amortizes the cost of accessing the same

attribute on the Python objects of the same type.

Attribute Access Dispatch Chain

Like the other operations, we model attribute accesses using AST nodes in ZipPy. We

model an attribute read operation using a GetAttributeNode and attribute write operation
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Figure 6.5: Attribute access dispatch chain
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using a SetAttributeNode. Figure 6.5 illustrates the structure of these two nodes. In

each attribute access node, the primary child node represents the primary expression, the

component precedes the period in Python’s syntax. The primary node evaluates to the

Python object, on which we perform the attribute access. The attribute nodes shown in both

Figure 6.5(a) and 6.5(b) are dispatch chains that perform the actual read or write on the

resolved object.

The attribute access dispatch chain is a linked list of dispatch nodes. Each dispatch node

has a next field that points to the next dispatch node except for the last one. The chain

forms a polymorphic inline cache with each node working as an individual cache entry. Each

entry stores the object layout and the location of a previously accessed attribute. Upon a

successive access to the attribute on a Python object sharing the same layout, the matching

dispatch node performs a direct memory operation using the cached location. In other words,

a cache hit in the dispatch chain avoids executing the slow path lookup on the object layout.

ZipPy performs an attribute access operation in a number of steps. It first evaluates the

primary object, and passes the object to the dispatch chain. The resolved primary object

travels through the dispatch chain from the top to the bottom one dispatch node after

another. Each dispatch node tests the cached object layout against the one of the incoming

object. If the test returns a match, the dispatch node performs a fast read or write on the

object and returns the result to the parent node if necessary. Otherwise, execution falls to

the next dispatch node on the chain until a cache hit occurs. If no cache hit happened,

the primary object reaches the uninitialized dispatch node at the end of the chain. The

uninitialized dispatch node, in this case, performs a full attribute access on the primary

object including a lookup on its layout table. Additionally, it also constructs a new cached

dispatch node and inserts the new node between the uninitialized dispatch node and its

predecessor. The added entry increases the depth of the inline cache as well as the chance

of a cache hit in the future. However, if the cache depth reaches a certain threshold, ZipPy
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Figure 6.6: The transformation of a get attribute dispatch node

rewrites the entire dispatch chain to a single generic dispatch node that always perform a

slow path lookup.

Each cache entry in the dispatch chain consists of a cluster of nodes coordinated by the

dispatch node. Besides the next field pointing to the next node, each dispatch node has a

LayoutCheckNode as well as an AttributeReadNode or AttributeWriteNode (Figure 6.5).

The check node stores the cached object layout and performs the layout test. The read or

write node stores the cached attribute location and performs the actual memory read or write

on the primary object. When a layout update happens, ZipPy creates a new layout instance

for the associated Python object. ZipPy also signals the old layout as invalid, since it does

not describe a valid layout for the associated object anymore. Therefore, when performing a

layout test the LayoutCheckNode also checks the validity of the cached layout. If the cached

layout become invalid, it throws an exception back to the parent node. ZipPy handles the

exception by removing the invalid cache entry from the dispatch chain.
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Dispatch Node Transformation

The above mentioned attribute access dispatch chain initially starts with a single uninitialized

dispatch node. It expands into a chain linking a number of LinkedDispatchNode during

execution. If the depth of the chain overflows the given limit, the entire chain transforms to a

GenericDispatchNode. Figure 6.6 further illustrates this transformation. The descriptions

of the transformation rules depicted in the Figure are as follows:

1. Upon a successful specialization, the uninitialized dispatch node produces a specialized

dispatch node that caches the layout of the primary object and the location of the

attribute being accessed. Depending on the data representation of the primary object,

it chooses the LinkedDispatchUnboxNode as the transformation target to avoid auto-

boxing. A LinkedDispatchUnboxNode stores the Java class of the unboxed object.

2. A LinkedDispatchBoxedNode performs the layout test through an identify check be-

tween the cached layout and the layout of the incoming primary object. A layout

test in a LinkedDispatchUnboxedNode compares the cached Java class to that of the

primary object. If the layout test returns a match, the cached dispatch node remains

unchanged. Note that in an attribute read operation, as explained in Section 6.1.2, the

resolved attribute may not be stored on the primary object itself. In fact, the actual

owner can be any object on the attribute resolution chain of the primary object. In

this case, the cached dispatch node needs to conservatively cache all the layout of the

objects on the attribute resolution chain from the primary object itself up to the owner

of the resolved attribute. In this case, to perform a proper layout test, the dispatch

node needs to perform a series of checks to ensure the validity of the cache layouts.

3. If the layout test returns a miss match or a cache miss occurs, the cached dispatch node

redirects execution to the next node on the dispatch chain. The same rules apply to

the transformation of the next dispatch node. In addition, if the cached layout become
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invalid, ZipPy removes the dispatch node from the chain.

4. If the execution of an attribute access dispatch reaches an uninitialized dispatch node

and the depth of the chain has reached a certain threshold, the dispatch node replaces

the entire dispatch chain with a GenericDispatchNode. A GenericDispatchNode

is stable meaning that it always perform a slow path attribute lookup and does not

re-specialize to other nodes.

The deeper the dispatch chain the more step it takes to reach the bottom portion of the

chain. The cost of hitting a cache entry located close to the bottom of the chain grows with

the depth of the chain. Thus, it is not cost effective to grow the dispatch chain indefinitely.

On the other hand, for a program location exhibits a high degree of polymorphism or also

referred as a megamorphic dispatch site, optimizing for just a few number of cases only affects

a limited fraction of the overall execution occurred at this program location. An optimization

strategy like inline caching is unlikely to have a meaningful performance impact in this case.

In summary, for a megamorphic dispatch site using a generic dispatch node is simpler and

as efficient as forming a deep dispatch chain.

6.2 Call Site Modeling

Calls are common in Python programs. In general you can call any callable object in Python.

However, there are different ways to make a call in Python. In different contexts the seman-

tics of a call in Python also differs, which makes it surprisingly difficult to model various

types of call sites in an efficient way.
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ham()

(a) Simple call site

p.egg()
(b) Attribute call site

Figure 6.7: Two types of calls in Python

6.2.1 Call Site Structures in Python

Figure 6.7(a) shows the basic syntax of a call in Python. It is simple enough for us to

explain the basic steps of making a call in Python without getting into more complicated

details. The execution of the call shown in the Figure involves the following steps. First, the

program needs to lookup the symbol ham from the current scope or its enclosing scope with

respect to Python’s scoping rules. After resolving the callee, the program then checks the

type of the callee to determine the eligibility of such call. Lastly, the actual call takes place

using a calling convention that matches the callee type. The Python interpreter handles

argument passing differently for different callee types. For instance, a constructor call, a call

to a Python class object, returns an instance of the Python class. In a constructor call, the

interpreter implicitly creates an empty Python object and passes it to the callee as the first

argument. Whereas such an implicit argument is not present if the caller is not a Python

class.

The call site shown in Figure 6.7(a) is in its simplest form. We refer it as a simple call

site. The callee resolution for the call shown in Figure 6.7(b) involves an attribute access

on the Python object p. Therefore, we refer this type of call site as attribute call sites. The

primary object, however, can be any namespace backed by a Python object such as a regular

object, a class object or a module. Note that, in a simple call site, the callee resolution might

involve an attributing access as well depending on the type of the surrounding scope where

the call takes place. For example, if ham is a global variable, the look up of ham includes

an implicit attribute access on the global scope object or the Python module. Similarly, in

a class scope, a simple call to an existing class attribute also involves an implicit attribute
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look up on the enclosing class object. The same syntax implies different semantics and ways

to make the actual call at runtime. To cover all the different variations, we decompose a call

site in ZipPy into a number of components or nodes, and assemble them in various ways to

serve our needs. This way allows us to apply specializations on each component separately

to optimize calls in Python programs.

The AST of Call Sites

Figure 6.8 illustrates the basic structure of a call node in ZipPy. A PythonCallNode em-

ployees five child nodes representing five components of the call site. Each child node can

further expand into its own sub tree depending on its complexity. A call node performs a

Python call incorporating its child nodes in the following steps:

1. The primary node evaluates the primary object of the call. If the primary component

is missing, the primary node returns the constant Python None object.

2. The callee node resolves the actual callee object using the previously resolved primary

object if necessary. If the callee resolution does not involve an attribute access, it

ignores the primary object.
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3. The arguments node evaluates all the arguments, and returns them to the call node as

a Java array.

4. The keywords node evaluates all the keyword arguments, and returns them to the call

node in an Java array.

5. The PythonCallNode passes the evaluated primary object, callee, arguments array

and keyword arguments array to the dispatch node. The dispatch node performs the

actual call using an inline caching inspired dispatch chain [26, 46], and passes all the

arguments to the AST of the callee. We will explain the call dispatch nodes in more

detail in Section 6.2.3.

Note that some components like the primary or keyword arguments are not always present.

In case that an optional component is missing, we still model it as a dummy node that returns

a None or an empty Java array to make it consistent for all call nodes. The PythonCallNode

organizes different components of the call site, and handles transformations like type spe-

cialization and deoptimization at runtime.

6.2.2 Call Node Specializations

Similar to other operations in ZipPy, we applies type specializations to call nodes against the

type of the callee through node rewriting. ZipPy initially constructs a call node using the

uninitialized version (UninitCallNode in Figure 6.9). Upon the first execution of the call,

the uninitialized call node executes a slow path to resolve the primary object and callee. At

the same time, it rewrites itself to a derivative version that is tailored to the resolved primary

and callee. Not only that the call node specializes itself, it also applies type specializations

to its child nodes during the rewriting process. In this Section, we explain how ZipPy applies

call node specializations for different call sites and callee types.
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Figure 6.9: Call node specializations for a simple call site

Specialization for Simple Call Sites

As explained in Section 6.2.1, the callee resolution of a simple call site (Figure 6.7(a)) is

determined by the type of the namespace to which the callee belongs. Therefore, the spe-

cialization of a simple call site needs to cover the different resolution cases. Figure 6.9

illustrates various call node transformations of a simple call site. The description of the

three different specialization cases shown in the Figure is as follows:

1. Callee in function activation The call takes place in a function scope. The re-

solved callee is a variable of the function’s lexical scope or its enclosing scope. The

primary object does not exist or is None in this case. Therefore, the primary node is

an EmptyNode that returns an None. The callee nodes retrieve the callee object from

the function’s activation or the frame object as discussed in Chapter 5.4.4. Although

type specialization is also applicable to the ReadLocalVariableNode, given that the

callee is guarantee to be a boxed object, type specialization in this case has limited
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benefit. However, Truffle is still able to optimize frame accesses by eliminating heap

allocation of the frame object when applicable.

2. Callee as a module attribute The resolved callee is an attribute of a module,

e.g., the global scope of the current module or the built-in module. The retrieval

of the callee in this case involves an implicit attribute referencing on the primary

module object. Since the primary object is boxed, ZipPy specializes the call node

to a BoxedCallNode. The primary node is a wrapper node that holds a reference

to the current module object. The callee node reads the callee attribute from the

module object returned by the primary node. The ReadGlobalNode accesses the built-

in module if it failed to resolve it from the global scope module. Upon a successful

resolution of the callee object, the ReadGlobalNode caches the actual primary object.

For instance, if the resolved callee object is an attribute of the built-in object, the node

caches the built-in object instead of the current module. Caching speedups subsequent

attribute accesses by performing a direct memory operation at the cached location as

long as the attributes of the object remain unchanged.

3. Callee as a class attribute The resolved callee is an existing class attribute of

the enclosing class scope. Class scope refers to the enclosed scope of a Python class

definition. Class definition works as a special function in Python. The evaluation of the

class definition statement is essentially a call to this special function. The interpreter

passes an empty class object as the first argument to the function, and the class

definition function populates the class object with attributes like functions. The call to

the class definition function returns the constructed class object containing attributes

specified by the class definition. In a class scope, to access an attribute of the class

being defined, we need to first retrieve the class object itself. The ReadArgumentNode

does so by reading the argument array passed by the caller of the class definition.

The callee node then reads the callee attribute from the primary class object. The
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class%Ham:
%%def%egg(self):,pass,,
h,=,Ham()
h.egg()

(a) Boxed primary

n"="42
n.bit_length()

(b) Unboxed primary

Figure 6.10: Attribute call sites with different primary object representations

GetAttributeNode also enjoys type specialization and caching on its own, which we

will discuss more in Section 6.1.

The call node specializations illustrated in Figure 6.9 are based on the resolution of the

primary object and callee. We simplified the Figure by not including the arguments node and

the keyword arguments node, since their specializations are orthogonal to callee resolutions.

Specialization for Attribute Call Sites

In Section 6.1 we discussed that ZipPy models Python objects using multiple data represen-

tations to make arithmetics and object operations more efficient. As a consequence, attribute

accesses on objects modeled using different representations are also different. Figure 6.10

shows two examples of attribute call sites. The primary object in the left example, h, is

a custom Python object (Figure 6.10(a)), whereas the primary object n in the right one

(Figure 6.10(b)) is a built-in integer. The callee resolutions in these two cases are different.

Figure 6.11 illustrates the specializations we implemented in ZipPy to handle both boxed

and unboxed primary types in an attribute call site. A BoxedCallNode expects a mutable

Python object as the primary and walks its attribute resolution chain upward to resolve

the callee. A UnboxedCallNode on the other hand expects an unboxed primary object. It

obtains the primary’s class object through the mapping table explained in Section 6.1.2 to

access the primary’s attribute resolution chain.
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Figure 6.11: Call node specializations for an attribute call site

In Python, an attribute reference that looks up a PyFunction object creates a PyMethod

that wraps both the primary and the PyFunction objects. If the PyMethod is invoked at

a different program location, it passes the stored primary object to the actual callee as the

first argument. The PyMethod creation guarantees the data binding between the primary

and its function attribute. However, in most cases, the allocation of the PyMethod object is

unnecessary. In an attribute call site, the resolved callee is invoked right away and does not

escape the program location where it is referenced. Therefore, there is no need to create the

wrapper PyMethod. By applying specialization for attribute call sites in ZipPy we eliminate

the creation of PyMethod objects in most cases.

Specialization for Special Method Call Sites

Python support operator overloading by allowing user defined classes to overwrite a set of

special methods. Those special methods all have underscores in their names. Figure 6.12

gives an example of overloading the add operation. By overwriting the add method, the
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class%Integer:
%%def%__init__(self,/v):
////self.v/=/v
%%def%__add__(self,/o):
////self.v/+=/o.v

l,/r/=/Integer(2),/Integer(3)
l/+/r
#"l.v"=="5;"r.v"=="3

Figure 6.12: Operator overloading by overwriting special method

abstract'class'AddNode'extends'BinaryArithmeticNode'{

''@Specialization(guards'='"isEitherOperandPythonObject")
''Object'doPythonObject(VirtualFrame'frame,'Object'left,'Object'right)'{
''''return'doSpecialMethodCall(frame,'"__add__",'left,'right);
''}

}

Figure 6.13: AddNode specialization for special method overwriting

shown program redefines the behavior of the add operation on the custom type Integer.

Therefore, the add operation on the last line of the program shown in Figure 6.12 performs

an in-place update on the object l. In the end, the values of the attribute v on the object l

and r equal to 5 and 3 respectively.

To support special method overwriting in ZipPy, we applied additional specializations to

the operation nodes that support overloading. As an example, Figure 6.13 shows such a

specialization we added to the AddNode in ZipPy. Add is a binary operation. An AddNode in

ZipPy specializes against the type of both left and right operands. If either of the operand is

a boxed Python object or of type PythonObject we specialize this add operation as a special

method call. The call to doSpecialMethodCall shown in the Figure tries to lookup the

special method add from the operands and invoke it. At the same time, the specialization

transformation also constructs a call dispatch chain that performs the actual invocation, and

attaches the chain to the add node.

Figure 6.14 illustrates the structure of an add node after successfully specialized for a special
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Figure 6.14: AddNode specialized for special method dispatch

method call. First, ZipPy specializes the add node itself to an AddObjectNode based on

the operand types. The left and right children of the add node can be nodes of any type.

We simply mark them as PNodes here to show their existences. More interestingly, a call

dispatch chain represented by the CallDispatchSpecialNode appears as a child of the add

node. A call dispatch chain is similar to an attribute access dispatch chain. It forms an

inline cache for calls, which we will explain in more detail in Section 6.2.3. When executing

a subsequent call to the special method, the add node first evaluates the two operands and

passes them to the call dispatch chain. The dispatch chain performs the actual call, and

passes the two operands as arguments to the callee.

6.2.3 Call Site Dispatch and Inlining

The most effective way to optimize a call is to avoid the call altogether. In other words,

inlining helps to eliminate the overhead incurred by calls. However, the dynamic features

of Python makes call inlining more challenging to implement. Any callable is a first class

object stored as an attribute of another object or namespace. The value of a symbol in a

namespace could change from a callable to a non-callable or a different callable object at

runtime. Due to the dynamic nature of Python, the callee resolution of a procedure call

needs to happens just-in-time of the call. A subsequent call performed at the same location

does not guarantee to call the same target.
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Figure 6.15: Call dispatch chain

To overcome this challenge we use call dispatch chains similar to the one described in Sec-

tion 6.1.4 to optimize and inline calls in ZipPy. A call dispatch chain is a linked list of

dispatch nodes that work as a polymorphic inline cache. Each cache entry on the chain

caches the layout of the primary object and the resolved callee of a previous call at the

same call site. Figure 6.15 shows the components of the call dispatch chain in more detail.

Each LinkedCallDispatchNode represents a single cache entry. The check node of the entry

caches the layout of a previous primary object, and performs a layout test to determine a

cache hit. The invoke node stores the cached call target, and calls the AST of the callee. A

call dispatch chain goes through the same transformation process as an attribute dispatch

chain, which starts with an uninitialized version and later on expands into a number of linked

dispatch nodes. If the depth of the chain grows over the given threshold, the entire chain

rewrites itself with a generic dispatch node.

In ZipPy, all Python functions are ASTs. Inlining a function call is essentially stitching

the AST of the callee to that of the caller at the node that represents the call site. Truf-

fle runtime handles the actual inlining and possibly cloning the callee AST automatically
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during execution. It does so through the InvokeNode interface shown in Figure 6.15. The

InvokeNode stores the AST of the resolved callee and passes the arguments to the callee AST

in a call. Truffle runtime profiles the hotness of each call in the InvokeNode and performs

call inlining by rewriting the InvokeNode. Some times different call sites pass arguments of

different types to the same callee. This difference in type causes the callee AST to specialize

for multiple call sites. To void this unwanted AST state share between different call sites,

Truffle clones the entire callee AST before stitches it to that of the caller.

However, Truffle’s call profiling and inlining treats the entire AST as a single entity. It

does not have domain knowledge about the semantics of the guest language but only to

provide building blocks for the guest language implementer. To enable AST inlining, ZipPy

needs to construct Python call sites using InvokeNodes in the way we have described above.

Alternatively, we could handle AST inlining complete by ourselves. From a software engi-

neering perspective, however, this is a less desirable solution, since offloading it to the Truffle

framework is easier to maintain in the long run.

6.3 Flexible Object Storages

As we described in Section 6.1, ZipPy uses a fixed Java object in combination with a dy-

namically updated layout table to model a mutable Python object. This design is a common

pattern shared by a number of Truffle based language implementations [86, 43, 40]. For sim-

plicity here we refer the fixed Java object as an object storage, since it stores the attributes

of a Python object. We refer the Java class used to create object storages as a storage class

in the rest of this thesis. Although using a fixed object storage provides both performance

efficiency and implementation simplicity, it is not optimal when it comes to space efficiency.

Most Python programs allocate small objects, which means that most of the object allocated
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class%Point:
%%def%__init__(self,.x,.y):
....self.x.=.x
....self.y.=.y

p.=.Point(1.2,.0.3)
#"p.x"=="1.2;"p.y"=="0.3"

(a) Python class Point

class%Point%extends%FlexiblePythonObjectStorage%{

%%%%protected%double%x;
%%%%protected%double%y;

%%%%protected%Object[]%objectsArray%=%null;

%%%%public%Point(PythonClass%pythonClass)%{
%%%%%%%%super(pythonClass);
%%%%}
}

(b) Generated Java class for Point

Figure 6.16: Flexible object storage example

at runtime only have a few number of attributes. To ensure the performance of an attribute

access we want to assign most attributes with a field location on the object storage. But

on the other hand is it impossible to predict the type of each attribute. To increase the

chance of an optimal location assignment, we need to increase the number of fields of each

type on the object storage. This size increase inevitably introduces more un-utilized memory

space at runtime. In addition, a fixed object storage is fixed. For a Python object that has

a large number of attributes it has to spill some of the attributes to the spill array. This

size limitation leads to performance overhead incurred by auto-boxing and more level of

indirections. In summary, fixed object storage is simple but has limitations when it comes

to both performance and space efficiencies.

6.3.1 Flexible Object Storage Generation

In addition to the fixed object storage, ZipPy also uses a class file generation based approach

to produce unique object storages for each Python class at runtime. Figure 6.16 gives an

example of the generated object storage. As shown in Figure 6.16(a), the simple Python

class Point only has two attributes, x and y. The instantiation of Point shown in the

Figure assigns two doubles to x and y. Based on this type information, ZipPy generates the
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Java class Point shown in Figure 6.16(b) as the object storage for instances of the Python

class. Note that the generated Java class has two double fields to store the attributes of the

Python class. We generate the object storage class optimistically assuming that the layout

of a Python Point object does not change in the future and the types of its attributes are

also stable. If our assumption holds, the generated Java class is the optimal object storage

tailored specifically for the Python class Point. In case of a layout change such as adding a

new attribute or an attribute type change, the generated object storage will utilize the spill

array as the fall back to accommodate new attributes. Upon the removal of an attribute, we

simply remove it from the layout table and leave the freed object storage location un-utilized.

The above mentioned object storage generation relies on layout information collected in the

instantiation of the Python class. We do not have enough information about the object

layout ahead of time or before the first instantiation of the Python class at runtime. On

the other hand delaying the object storage generation results in diminishing returns, since a

large number of Python objects allocated before hand cannot benefit from this optimization.

Therefore the most effective way is to generate a flexible object storage for the Python class

when it first instantiated. ZipPy uses a specialized constructor call node to perform the first

instantiation of a Python class in the following steps:

1. Create a fixed object storage, which we refer as a bootstrapping object, to collect

layout information from the constructor call.

2. Call the resolved constructor, and pass the bootstrapping object as the first argument

self.

3. After the constructor call, generate a flexible object storage class based on the current

layout of the bootstrapping object similar to the one shown in Figure 6.16(b).

4. Create a flexible object storage using the generated storage class, and migrate the

attributes from the populated bootstrapping object to the flexible object storage.
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class%Point:
%%def%__init__(self,.x,.y):
....self.x.=.x
....self.y.=.y

%%def%addNeighbor(self,.n):
....self.neighbors.=.n

(a) Extended Python class Point

n"="[]
"
for$i$in$range(5):
""p"="Point(i*1.0,"i*0.5)
""p.addNeighbors(n)""
""n.append(p)

(b) A loop that uses the Point class

Figure 6.17: Python object layout change example

5. Rewrite the constructor call node to a version that optimizes the subsequent construc-

tor calls by directly allocating a flexible object storage.

6. Invalidate the layout on the fixed object storage and return the instantiated flexible

object storage to the caller.

Even though we rely on a fixed object storage to bootstrap the class generation, we discard

it immediately after migrating all the attributes to the flexible object storage. Therefore, the

caller of the Python constructor does not hold reference to the bootstrapping object, and it

is in most cases safe to ignore it. However, there is a special case where the bootstrapping

object is accessed again. We will discuss this issue in more detail in Section 6.3.4.

Note that the bootstrapping process described above only happens once for each Python

class. After the successful generation of the flexible storage class, any subsequent attempt

to instantiate the same Python class automatically picks up the updated storage class. If

the Python program does not instantiate a loaded Python class, ZipPy does not generate

flexible storage class for it.
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6.3.2 Continuous Storage Class Generation

The above mentioned flexible object storage generation rely on a common practice among

Python programmers that is do not abuse the mutability of Python objects after its instan-

tiation. Since it is permitted by the language, a large portion of Python programs do not

strictly follow this practice. Figure 6.17 shows an updated implementation of the Python

class Point that changes its object layout outside the constructor. Note that the new im-

plementation has an additional method called addNeighbors. The method inserts a new

attribute to the instances of Point. A hypothetical loop shown in Figure 6.17(b) calls the

addNeighbors method in the loop body, and causes a layout change after the instantiation

of the class Point. The behavior of the program shown in the Figure does not follow the

suggested coding practice, however, it is in fact commonplace among Python programs.

Although flexible object storage is capable of handling layout changes like the one shown in

Figure 6.17, it does so by spilling the new attribute to the spill array. A few number of layout

changes occurred after the instantiation is enough to cripple the performance advantage

of using such a flexible object storage. To address this issue we extended flexible object

storage generation in ZipPy to support continuous generation of storage classes. Every

newly generated storage class adopts the layout changes happened so far. So if the layout

changes converge to a stable point, ZipPy allocates all subsequently instantiated Python

objects using the optimal flexible object storage.

ZipPy supports continuous storage class generation by applying a series of node transforma-

tions on a constructor call site. We implement a number of call node versions specifically

for constructor calls or constructor call nodes. Each version handles the allocation of the

new Python object in a different way. Figure 6.18 shows the various call constructor nodes

in ZipPy. The descriptions of each node is as follows:

• UninitCallNode: Uninitialized call node representing an un-executed call site.
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UninitCallNode

CallCtorFlexNode

CallCtorBootstrappingNode

CallCtorFixedNode

w/ flexible 
object storage
1

storage class regeneration4

bootstrapping3

fixed object storage2

uninitialize5

Figure 6.18: Constructor call site transformation

• CallCtorFlexNode: Specialized constructor call node that allocates Python object

instances using a flexible object storage.

• CallCtorBootstrappingNode: Specialized constructor call node that bootstraps the

initial flexible storage class generation.

• CallCtorFixedNode: Specialized constructor call node that allocates Python object

instances using a fixed object storage.

Figure 6.18 also illustrates the transformations between different call constructor nodes that

enables continuous storage class generation. The descriptions of the transformation rules are

as follows:

1. With flexible object storage enabled, upon the first execution of a constructor call

site, ZipPy rewrites the uninitialized call node to a constructor call node that allocates

flexible object storages. If this call is the first instantiation of the target Python

class, we rewrite the call node to a CallCtorBootstrappingNode. Otherwise, if the
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target Python class has an existing flexible storage class, we rewrite the call node to a

CallCtorFlexNode.

2. With flexible object storage disabled, the initialization of a constructor call site rewrites

the call node simply to a CallCtorFixedNode.

3. After the first instantiation of a Python class, the CallCtorBootstrappingNode gen-

erates the first flexible storage class and rewrites itself to a CallCtorFlexNode.

4. When a CallCtorFlexNode detects a layout change, it generates an updated Java

storage class for the target Python class, and allocates a Python object using the

updated storage class. It also rewrites itself to a new CallCtorFlexNode optimizing

for the allocation of the updated storage class.

5. If the callee of the constructor call changes, all specialized call node transforms back

to the uninitialized call node.

Each Python class keeps track of its own Java storage classes used to instantiate the Python

class. It marks the most recently generated storage class as its current storage class. Each

CallCtorFlexNode caches the current storage class and the Java method handle [70] of

its constructor. When allocating an object storage, the CallCtorFlexNode calls the Java

constructor of the storage class by using the cached method handle. A Python object layout

change signals its Python class to mark the current storage class as “old”. The following

instantiation of the Python class triggers an storage class generation, and replaces the “old”

current storage class with the “new” one. Subsequent instantiations of the Python class

automatically pick up the update, and make sure to allocate Python object instances using

the current storage class.
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Figure 6.19: Continuous storage class generations and object layout changes of an example
Python class
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6.3.3 A Generalization to the Object Model

Continuous storage class generation generalizes the existing object model of ZipPy to enable

the use of multiple storage classes for a single Python class. Figure 6.19 illustrates the

transitions of storage classes and object layouts of an example Python class during the life

time of the class. In the object model described previously where we only use fixed storage

classes to model Python objects, an object layout change at runtime triggers a transition

vertically in the Figure. Whereas with continuous storage class generation an object layout

change also triggers a storage class regeneration along the horizontal direction in the Figure.

The transitions of the storage classes are orthogonal to that of the object layouts. Each

storage class follows its own object layout transitions.

Every Python object has its own life time. The life time starts from the instantiation of

the object, and ends at the point that it is not referenced by the program and ready to be

garbage collected. In the middle of its life time, a Python object allocated using on storage

class in general cannot migrate its attributes to use another storage class. Since there could

be existing pointers that reference the current object storage of the Python object, a storage

class migration will turn those existing pointers into dangling pointers. Therefore, a Python

object needs to reside in a single object storage throughout its life time.

A storage class generation caused by an object layout change only benefits Python objects

instantiated after the layout change. The living or existing objects of the same Python class

handle layout changes lazily by spilling the new attribute to the spill array and updating

its own layout table. Note that similar to the fixed object layout approach, we synchronize

object layout changes across all the Python objects allocated using the same storage class. We

will use a program execution example to further explain the object layout synchronizations.

For instance, along the execution of a hypothetical Python program, the program at one

point allocates two Python object A and B both using the storage class Flexible 0 shown
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class%Point:
%%def%__init__(self,.x,.y):
....self.x.=.x
....self.y.=.y
....board.append(self)

Figure 6.20: A Python constructor that exposes a reference to self

in Figure 6.19. Since Python object instantiation always picks up the latest storage class,

Flexible 0 is the most current storage class at this point. Both A and B only have a single

attribute a. At a later point, an object layout takes place by adding an attribute b to the

object A. Object A updates its own layout table, invalidates the previous object layout,

and sets the new object layout as the valid layout of Flexible 0. Since we invalidated

the previous object layout, any object that still uses the old layout needs to synchronize

to the updated layout. The following access to object B will cause an slow path execution

that synchronizes its object layout with Flexible 0. After the layout synchronization, even

though object B does not actually contain the attribute b, its layout table includes an entry

for b. Note that the above mentioned layout change also signals the Python class to generate

storage class Flexible 1. However, object A and B will not migrate to another storage class

and always synchronize its with Flexible 0 to share the same object layout.

Object layout synchronization simplifies the attribute access dispatch we explained in Sec-

tion 6.1.4. It ensures that we only need to maintain a single valid cache entry to access

Python objects allocated using the same storage class. However, in its life time, a Python

class could generate multiple storage classes. It is inevitable that at the same program loca-

tion we need to built multiple cache entries, one for each storage class, to optimize accesses

to Python objects of the same class.
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6.3.4 Zombie Resurrection

We uses a fixed object storage to bootstrap the initial storage class generation. But we only

return the instantiated Python object to the caller of the constructor after migrating to a

flexible object storage and discarding the initial fixed one. This approach ensures that the

consumer of the constructor call only references the flexible object storage. However, there

are cases where the constructor itself could expose the reference to the fixed object storage

making it accessible outside the constructor. Figure 6.20 shows a modified definition of the

Python class Point. The constructor of Point stores a reference to self to the Python list

board. The reference store makes potential accesses to self possible outside the constructor.

So during the storage class bootstrapping of Point, the shown reference store of self will

make the bootstrapping object modeled using the fixed object storage accessible at a later

point. We refer this scenario as zombie resurrection. Since the bootstrapping object, in most

case a dead object, comes to live again in this particular situation.

We address this issue by turning the zombie object storage into a proxy to the flexible storage

object it migrates to. To be more specific, in the last step of bootstrapping a storage class

generation, after migrating to the flexible object storage, we pass a reference to the flexible

object storage the zombie object storage, and flag it as a proxy. As a proxy, the zombie

redirects all attribute accesses to the flexible object storage. This approach ensures that all

references to the first instance of a Python class eventually access the same flexible object

storage, hence, preserves the correct semantics.

6.3.5 Discussion

ZipPy execute Python programs first in the interpreter mode, and compiles the program

when it becomes hot. The warming up phase of the guest program executes in interpreter

mode. ZipPy compiles the Python program only after it has been executed for a few iterations
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when the specializations of the program become stable. The same type locality principle

applies to Python object layouts as well. That is the layouts of Python objects of the same

class tend to converge and stabilize after the initial warm up phase. Therefore, ZipPy in most

cases compiles Python programs only after their object layout evolution has stabilized. The

underlying Java JIT compiler treats Python objects as regular Java objects, since we model

them using ordinary Java objects. The compiler is able to apply aggressive optimizations

such as escape analysis to Python objects as well. When combined with flexible storage class

generation, our object model design offers both performance and space efficiency that closes

the gap between the guest language and the host language.
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Chapter 7

Evaluation

To fully assess the effectiveness of the optimizations we discussed in the Chapter 4, 5 and 6,

we evaluate the performance of ZipPy in the following steps: First we evaluate the overall

performance of ZipPy by running a selection of conventional benchmarks. These benchmarks

are popular among the virtual machine research and Python communities. They provide a

good indication of the overall performance of a programming language implementation. Sec-

ond we examine the effectiveness of generator peeling using a set of real world and generator

intensive Python programs. As the last step, we analyze the performance and space impact

of using flexible object storage generation in ZipPy. We organize our extensive performance

experiments by comparing ZipPy with the existing Python VMs.
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7.1 The Performance of ZipPy

7.1.1 Experiment Setup

We evaluate the overall performance of ZipPy by comparing the performance of our system

with existing Python VMs, such as CPython [76], Jython [57] and PyPy [75]. Our system

setup is as follows:

• Intel Xeon E5462 Quad-Core processor running at a frequency of 2.8GHz, on Mac OS

X version 10.9.3 build 13D65.

• Apple LLVM 5.1, OpenJDK 1.8.0 05, Truffle/Graal 0.3.1

The VM versions used in the comparison and the description of their execution models are

as follows:

• CPython 2.7.6 and 3.4.0: Interpreter only.

• Jython 2.7-beta2: Python 2 compliant, hosted on JVMs. Compiles Python modules

to Java classes and lets the JVM JIT compiler further compiles them to machine code.

• PyPy 2.3.1 and PyPy3 2.3.1: Python 2 and 3 compliant respectively. Uses a meta-

tracing JIT compiler that compiles Python code to machine code.

Python 3 is not backward compatible with Python 2. Although ZipPy exclusively supports

Python 3, including well-established Python 2 VMs in the comparison highlights the potential

of our optimization. The benchmarks we chose support both Python 2 and 3. The same

code, however, suffers from a slight difference in the semantics interpreted by different VMs.

1From source code repository http://hg.openjdk.java.net/graal/graal
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Benchmark suite Included benchmarks

Computer Language Benchmarks - binarytrees, fannkuchredux, fasta, mandelbrot, meteor
Games nbody, pidigits, spectralnorm

Unladen Swallow Benchmarks float, richards

PyPy Benchmarks chaos, deltablue, go

Table 7.1: Benchmarks selection

We run each benchmark ten times on each VM and average the execution times. For VMs

that use a tiered execution strategy, we warm up the benchmarks to ensure that the code is

just-in-time compiled. This allows us to properly measure peak performance.

7.1.2 Benchmark Selection

We selected a number of benchmarks for the performance experiments from three popular

benchmark suites. The descriptions of the chosen benchmark suites are as follows:

• Computer Language Benchmarks Game [34]: a popular benchmark suite for evaluating

and comparing the performance of different programming languages.

• Unladen Swallow Benchmarks [2]: the benchmark suite used by the unladen swallow

project. Unladen swallow is an optimization branch of CPython built by Google. The

goal of the project was to become a faster yet fully compatible modification of CPython.

Its benchmark suite is well-regarded in the Python community.

• PyPy Benchmarks: a collection of benchmarks used by the PyPy project.

Table 7.1 summarizes the benchmarks we selected in this experiment from the above men-

tioned suites. Since we focus on the overall performance of Python VMs, we intentionally
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Benchmark CPython3 CPython Jython PyPy PyPy3 ZipPy

binarytrees 5.40 5.10 10.76 14.05 14.60 39.49
fannkuchredux 2.27 2.20 1.17 101.24 107.52 198.94
fasta 15.52 16.20 24.13 182.09 174.55 241.76
mandelbrot 9.00 9.70 3.03 98.15 97.35 105.18
meteor 100.55 102.83 77.14 265.43 263.75 213.77
nbody 10.12 9.87 7.40 122.83 122.07 62.42
pidigits 77.02 77.40 47.59 75.25 73.02 46.59
spectralnorm 0.90 1.20 1.70 114.60 114.52 115.29
float 10.82 10.23 11.37 93.57 93.82 191.68
richards 16.77 15.83 20.35 495.38 490.70 840.93
chaos 2.05 2.40 3.17 83.77 52.65 139.94
deltablue 19.62 16.77 26.19 590.25 571.82 460.37
go 23.15 24.97 46.16 157.29 154.07 356.80

Table 7.2: The scores of Python VMs running regular benchmarks

leave out benchmarks that are sensitive to the performance of generators. We selected

benchmarks that are written in both imperative and object oriented styles.

7.1.3 Experiment Results

Table 7.2 and 7.3 shows the results of our experiments. We use a score system to gauge

VM performance. We calculate the score by dividing 1000 by the execution time of the

benchmark. A score system is more intuitive than execution times for visualization purpose.

It also offers a higher resolution for our performance measurements. We carefully chose the

program inputs such that the resulting scores stay in the range between 10 and 1000. Larger

inputs have limited impacts on the speedups our of optimization.

Table 7.2 shows the average scores of each Python VM running the selected benchmarks.

Table 7.3 shows the average speedups of each VM against CPython3. We calculate the

speedups by normalizing the scores of each VM shown in Table 7.2 against that of CPython3.

The last row of Table 7.3 shows the geometric mean of the speedups of each Python VM
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Benchmark CPython3 CPython Jython PyPy PyPy3 ZipPy

binarytrees 1.00 0.94 1.99 2.60 2.70 7.31
fannkuchredux 1.00 0.97 0.51 44.53 47.29 87.50
fasta 1.00 1.04 1.55 11.73 11.24 15.57
mandelbrot 1.00 1.08 0.34 10.91 10.82 11.69
meteor 1.00 1.02 0.77 2.64 2.62 2.13
nbody 1.00 0.97 0.73 12.13 12.06 6.17
pidigits 1.00 1.00 0.62 0.98 0.95 0.60
spectralnorm 1.00 1.33 1.89 127.33 127.25 128.10
float 1.00 0.95 1.05 8.64 8.67 17.71
richards 1.00 0.94 1.21 29.53 29.25 50.13
chaos 1.00 1.17 1.55 40.88 25.69 68.28
deltablue 1.00 0.85 1.33 30.08 29.14 23.46
go 1.00 1.08 1.99 6.79 6.66 15.41
mean 1.00 1.02 1.05 12.15 11.68 15.34

Table 7.3: The speedups of Python VMs normalized to CPython3 running regular bench-
marks

relative to CPython3. As shown in the Table, the average speedup of ZipPy over CPython3

is 15.34× with the highest speedup over 128× on spectralnorm. Note that the performance

of ZipPy running the selected benchmarks is even higher than PyPy by around 26%

7.1.4 Performance Analysis

The majority of the high number speedups of ZipPy comes from compute intensive bench-

marks like the ones from the Computer Language Benchmarks Game. The unboxed data

representation of numeric types in ZipPy successfully optimizes these benchmarks without

ever having to go to the boxed representation. At peak performance, ZipPy executes the

entire benchmark by only using Java primitives for arithmetic operations. This approach

effectively enables low level optimizations offered by the underlying Graal compiler, which

consequently achieved Java like arithmetics performance for Python programs in our ex-

periments. Being able to speculatively reduce the cost of arithmetic operations in Python

to be much closer to that in Java is the key distinguisher between ZipPy and the existing
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JVM-based Python implementations.

The noticeable slow down in pidigits is caused by integer overflows in Python. After an integer

overflow, ZipPy uses a JDK BigInteger [69] to model integers of a large value. However, the

implementation of BigInteger in the JDK did not outperform the implementation of PyInt

in CPython on our benchmark. We did not pursue in the direction of replacing BigInteger

with a more efficient alternative written in Java, since we consider the implementation details

of an unbound integer type to be orthogonal to the research we discuss in this thesis.

We also see speedups of multiple of 10× on object-bound benchmarks like richards and chaos.

We only use fixed object storages in this experiment. The results suggest that the Python

object model used in ZipPy is orders of magnitude more efficient that the hash map based

ones used in CPython and Jython. The object layout based approach in ZipPy clears the way

on letting the underlying Java compiler to optimize Python object accesses the same way as

it does to Java objects. In the common case where the object layouts stabilize shortly after

warming up, ZipPy essentially delivers Java like performance on Python object operations

in our experiment.

Overall ZipPy outperforms PyPy in our experiment. We attribute this advancement to

Graal, the underlying Java JIT compiler. PyPy uses a relatively straight forward tracing

JIT compiler to compile Python programs down to machine code. Whereas Graal is a

substantially more sophisticated and aggressive method JIT. The kinds of optimizations

implemented in Graal outnumbered that in PyPy. Overall we do expect Graal to generate

more efficient machine code than the compiler in PyPy.

In general the speedups we achieved in our experiment are inline with other efficient Truffle

language implementations [86, 43, 40]. A number of semi built-in optimizations offered by

Truffle helped us achieving this result. The most important ones includes: frame optimization

that eliminates the heap allocation of a frame object and Truffle AST inlining. Another
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advantage of using Truffle as the base of ZipPy is that it makes it easy for guest language

implementers to fine tune the machine code size produced by the compiler. Truffle offers

utilities that helps us to precisely specify the boundary of a JIT compilation rather than fully

relying on the compiler heuristics. This features allows us to carve out less important code

paths from the compiled code to make the machine code size more compact. In summary,

by making better use of Truffle ZipPy is able to achieve high speedups when compared with

existing Python VMs with low implementation cost.

7.2 The Effectiveness of Generator Peeling

We evaluate the performance of our generator peeling implementation in ZipPy by running

Python programs that have intense use of generators. We used the same experiment setup

as we did in the overall performance evaluation of ZipPy in Section 7.1.

7.2.1 Benchmark Selection

We analyzed hundreds of programs listed on the Python Package Index [73]. We picked a

set of programs that includes compute intensive benchmarks as well as larger applications.

The following chosen programs use generators to various degrees:

• nqueens is a brute force N-queens solver selected from the Unladen Swallow benchmark

suite [2].

• The publicly available solutions to the first 50 Project Euler problems [1]: euler11

computes the greatest product of four adjacent numbers in the same direction in a

matrix; euler31 calculates the combinations of English currency denominations.
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• Python Algorithms and Data Structures (PADS) library [28]: eratos implements a

space-efficient version of sieve of Eratosthenes; lyndon generates Lyndon words over an

s-symbol alphabet; partitions performs integer partitions in reverse lexicographic order.

• pymaging is a pure Python imaging library. The benchmark draws a number of geo-

metric shapes on a canvas.

• python-graph is a pure Python graph library. The benchmark processes a deep graph.

• simplejson is a simple, fast JSON library. The benchmark encodes Python data struc-

tures into JSON strings.

• sympy is a Python library for symbolic mathematics. The benchmark performs generic

unifications on expression trees.

• whoosh is a text indexing and searching library. The benchmark performs a sequence

of matching operations.

We learned from our generator survey that popular HTML template engines written in

Python use generators. There are two reasons we do not include them in our performance

evaluation. First, we implement ZipPy from scratch. It is infeasible for us to support

all Python standard libraries required to run these applications. Second, many of these

applications are not compute intensive. They spent most of the execution time processing

Unicode strings or in native libraries, which is not a good indicator of the VM performance.

7.2.2 Experiment Results

Table 7.4 shows the results of our experiments. We use a score system to gauge VM perfor-

mance. We calculate the score by dividing 1000 by the execution time of the benchmark. A

score system is more intuitive than execution times for visualization purpose. It also offers a
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Benchmark Score −GP Score +GP Speedup No. gen No. genexp No. of lines

nqueens 69.09 313.14 4.53 2/2 5/5 41
euler11 71.42 941.73 13.19 2/2 5/5 61
euler31 47.70 134.35 2.82 1/1† 2/2 46
eratos 277.13 316.64 1.14 2/2 0/0 86
lyndon 37.89 859.91 22.69 3/3 0/0 127
partitions 50.36 217.56 4.32 1/1 0/0 228
pymaging 102.80 283.99 2.76 2/2 0/0 1528
python-graph 51.89 93.08 1.79 2/2 2/2 3136
simplejson 66.12 242.52 3.67 1/1 0/0 3128
sympy 198.55 259.68 1.31 4/5† 1/2 262k
whoosh 242.74 676.10 2.79 4/4 0/0 40k
mean 3.58

† Contains recursive generator calls.

Table 7.4: The performance numbers of generator peeling

higher resolution for our performance measurements. We carefully chose the program inputs

such that the resulting scores stay in the range between 10 and 1000. Larger inputs have

limited impacts on the speedups our of optimization.

The second and third rows of Table 7.4 show the score of each benchmark without and with

the generator peeling optimization respectively. The speedup row gives the speedups of our

optimization. The geometric mean of the speedups is 3.58×. The following two rows of

Table 7.4 show the number of generator loops and generator expressions (implicit generator

loops) used in the benchmarks as well as how many of them are successfully optimized

using generator peeling. The number on the left in each cell is the number of optimized

generator loops, and the number on the right is the total number generator loops used in the

benchmark. Note that we only count generator loops that are executed by the benchmarks,

since these are the ones that we can potentially optimize. Table 7.4 also shows, for each

benchmark, the number of lines of Python code in the bottom row.
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7.2.3 Performance Analysis

Our experiments show that generator peeling covers most instances of generator loops used

in the benchmarks and results in speedups of up to an order of magnitude. The following

four steps explain how we obtain this performance.

1. Generator peeling eliminates the allocation of generator objects.

2. Generator peeling eliminates expensive suspend and resume control-flow transfers and

replaces them with local variable assignments.

3. The optimized generator loops avoid the use of generator ASTs, which enables frame

optimizations provided by the underlying JIT compiler. The implicit generator loop

transformation eliminates the closure behavior of the generator expressions and enables

frame optimization of the enclosing scope.

4. Generator peeling increases the scope of optimizations for the underlying compiler. As

a result, generator peeling creates more optimization opportunities for the compiler,

resulting in better optimized code.

To verify that generator peeling completely eliminates the overhead incurred by generators,

we rewrote the benchmark nqueens to a version that only uses loops instead of generators. We

compare the scores of ZipPy running the modified version and the original benchmark with

generator peeling enabled. We found that generator peeling delivers the same performance

on the original benchmark as manually rewriting generator functions to loops.

However, the number of optimized generator loops does not directly relate to the speedups

we observed. The time each program spends in generator loops varies from one to another.

The shorter the time a program spends in generator loops, the smaller the speedup result-

ing from our optimization. For each generator loop, the overhead-to-workload ratio is the

108



nqueens

euler11

euler31

eratos

lyndon

partitions

pymaging

python-graph

simplejson

sympy

whoosh

geomean

0 25 50 75 100

20.59

56.53

2.37

14.58

3.16

95.96

40.29

162.88

3.32

13.09

57.43

29.05

10.92

34.79

5.78

19.08

3.34

59.03

24.62

24.54

1.14

8.38

5.07

11.95

10.53

22.45

6.66

11.99

3.43

64.68

25.44

24.26

1.26

7.71

6.04

12.31

1.16

1.39

0.71

1.23

0.54

1.1

1.72

2.37

1.68

0.64

0.75

2.14

1.14

1.06

1.26

1.16

0.93

0.93

1.02

1.16

1.42

1.01

0.91

2.12

1

1

1

1

1

1

1

1

1

1

1

1

CPython3 CPython Jython PyPy3 PyPy ZipPy

Figure 7.1: Detailed speedups of different Python implementations normalized to CPython
3.4.0
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overhead incurred by the generators divided by the actual computation performed in the

loop. Generator loops with a higher overhead-to-workload ratio achieve higher speedups

from generator peeling. Loops in which the actual computation dominates overall execution

benefit less from generator peeling.

For instance, euler11 is a compute intensive program where generator overhead dominates

the execution. Generator peeling transfers the program into nested loops that perform

mostly arithmetic, which is an ideal optimization target for the JIT compiler. On the other

hand, larger programs like python-graph contain extensive use of user-defined objects and

other heap-allocated data structures. The overhead-to-workload ratio in such programs is

relatively low. Although having the same number of generator functions optimized, generator

peeling results in different speedups in these two programs.

Despite the fact that larger Python programs exhibit a large number of type changes, gener-

ator loops tend to remain stable. Programmers tend to write generator loops that consume

generator objects produced by the same generator function. In our experiments, We only

found a few number of polymorphic generator loops, which, as described in Section 5.4.3,

our optimization is able to handle.

When optimizing nested generator loops, ZipPy starts by peeling off the root layer in a

non-generator caller. If it successfully optimizes the first layer, ZipPy continues to peel

off subsequent layers. If this iterative process fails at one layer, ZipPy stops peeling. The

benchmark euler31 and sympy include recursive generator functions that contain calls to

itself. Such a recursive generator function effectively contains infinite levels of generator

loops. In other words, the optimized generator body always contain a generator loop that

calls the same generator function. The fixed inlining budget only allows ZipPy to optimize

the first few invocations of a recursive generator function to avoid code explosion. Generator

peeling has limited impact on the performance of a deep recursive call to such a generator

function. This incomplete coverage of recursive generator functions is an implementation
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limitation.

Generator peeling is essentially a speculative AST level transformation that is independent

from JIT compilation. Not only does it improve peak performance, it also speeds up interpre-

tation before the compilation starts. Generator peeling does not introduce new optimization

phases to the compiler, rather it simplifies the workload for the underlying compiler. For

the nested generator loops case, generator peeling does increase the AST size but it also

reduces the number of functions that need to be compiled. In general, generator peeling has

negligible impact on the compilation times.

7.2.4 ZipPy vs. PyPy

PyPy is the state-of-the-art implementation of Python that implements a meta-tracing JIT

compiler for aggressively optimizing Python programs [14, 80]. PyPy is fairly mature and

complete compared to ZipPy.

ZipPy on the other hand is more light weight in terms of implementation effort. It ben-

efits from low-cost speculative type specialization, which is the most critical performance

optimization for dynamic languages. ZipPy does not have to invest or maintain its own

compilation infrastructure. It relies on the underlying Java compiler to JIT compile Python

code. The Java JIT compiler is, in general, more sophisticated and aggressive than the one in

PyPy. Any additional optimizations added to Truffle will automatically benefit our system.

PyPy’s Generator Optimization

PyPy also supports a generator optimization that primarily targets simple generator func-

tions in its recent releases. Figure 7.2(a) shows an example generator loop (left) that con-

sumes a simple generator function (right). We use this example to demonstrate PyPy’s
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def$gen(n):
''x'='0
''for$i$in$range(n):
''''yield$x
''''x'+='i

l'='[]
for$j$in$gen(10):
''l.append(j)

(a) A generator loop example

  x += i

  r = range(n)

i = next(r)
last_exception?

  j = x
  l.append(j)

False

Exit

is_resuming?

True

Exit

2

Double exists block

Single exist block

  n = 10

  x = 0
  r = range(n)

i = next(r)
last_exception?

  j = x
  l.append(j)

is_first_entry?

False

True

Exit

Exit

1

n Trace number n

(b) Optimized trace of the generator loop example

Figure 7.2: Generator optimization in PyPy
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Benchmark Speedup −GP Speedup +GP

nqueens 0.52 2.36
euler11 0.72 9.51
euler31 0.60 1.70
eratos 2.30 2.63
lyndon 0.30 6.71
partitions 0.37 1.58
pymaging 0.55 1.48
python-graph 0.51 0.92
simplejson 0.33 1.22
sympy 0.27 0.36
whoosh 0.90 2.52
mean 0.55 1.95

Table 7.5: The speedups of ZipPy without and with generator peeling normalized to PyPy3

optimization. PyPy is able to trace the execution of the loop and compiles it into machine

code. The trace compiler inlines the implicit call to the generator’s next method into the

loop body. It does so by constant folding the last instruction pointer on the generator

frame, which stores the suspended program location in the generator. The subsequent com-

piler optimizations convert the yield operation to a direct jump. However, generator frame

accesses are not fully optimized, since its allocation happens outside the trace and cannot

be seen by the JIT compiler.

PyPy’s trace compiler compiles linear execution paths into machine code. Different iterations

of a generator loop are likely to be compiled into different traces. Figure 7.2(b) illustrates

two different traces the compiler generates for our example. We simplified the intermediate

representation format in PyPy’s trace to make it more readable. The first iteration of the

loop goes into trace one; the remaining iterations execute in trace two. More complicated

control structures and multiple yields in a generator function introduce more branches in

the consuming loop. The number of traces generated by the compiler increases for more

complicated generators. As a result, the execution of an optimized generator loop has to

switch between different traces. Not only does the trace switching incur slow paths, it also
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increases instruction cache misses. Currently more complicated generators are not properly

optimized by PyPy.

Generator peeling on the other hand is able to optimize more complicated generators. ZipPy

using the underlying method-based JIT compiler compiles the entire transformed generator

loop into machine code, and completely removes overheads incurred by a generator. More-

over, by analyzing the assembly code produced by both JIT compilers, we found that, even

for a simple generator case, Truffle is able to produce more efficient machine code. Table 7.5

shows the speedups of ZipPy with and without generator peeling, relative to PyPy3 (Python

3). The overall performance of ZipPy without generator peeling is competitive with PyPy3.

However, by enabling generator peeling, our system outperforms PyPy3 by a factor of two.

7.3 The Effectiveness of Flexible Object Storages

In the overall performance evaluation of ZipPy we used a fixed object storage configuration

in our experiments. Here we extend our experiments and evaluates the implementation of

flexible object storage in ZipPy. We do so by comparing the time and space efficiency between

the different object model configurations in ZipPy. We select a number of object-bound

benchmarks from our comprehensive benchmark selection for this particular experiments.

Those benchmarks includes: float, richards, chaos, deltablue and go. We used the same

experiment setup as mentioned previously in Section 7.1.

7.3.1 Object Model Configurations

As we discussed in Chapter 6, a fixed object storage has a fixed number of fields to stores

Python object attributes. To accommodate attributes modeled using Java primitive types,

a fixed object storage needs to have fields of different types, such as Java int, double and
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Object. In our experiment, we use fixed object storages that have equal number of fields of

each of these three types. Note that we cannot mix the fields of different types, since the

binary representation of each type varies in different JVM implementations. For instance,

some versions of the HotSpot VM [69] use a technique called pointer compression to reduce

the size of a Java object pointer. Therefore, storing a non-pointer value in a pointer field

using Unsafe will lead to unexpected behavior at runtime. The size of a fixed object storage

refers to the number of fields of each type the storage has. The bigger the storage size

the more attribute it can accommodate in a field. However, larger storage size also lead to

memory space inefficiency. Since a large portion of the object storage space maybe not be

utilized. In the overall performance evaluation, the space configuration of the fixed object

storage used in ZipPy is five.

The size of a flexible object storage is determined at runtime. The two different configurations

we used in our experiment are simple flexible object storage and flexible object storage with

continuous generation. Simple flexible object storage means we only generate one storage

class for each Python class. We handle all post-constructor object layout change by using

the spill array. In flexible object storage with continuous generation, we always generate a

new storage class whenever a layout change takes place.

7.3.2 The Performance of Flexible Object Storages

Figure 7.3 shows the performance of each object model configuration running the selected

benchmarks normalized to the fixed object storage. With flexible object storage enabled we

discover speedups when running the majority of the benchmarks with the highest speedup

of 14% on chaos. The average speedup of using flexible object storage is 2 to 3%. We also

notice a slowdown on richards. The worse case slowdown caused by using flexible object

storage is about 22%.
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Figure 7.3: Detailed speedups of different object model configurations normalized to fixed
object storage of size 5
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We did not observe more aggressive speedups, because of the high setting on the size of the

baseline fixed object storage configuration. A fixed object storage of size five has fifteen

fields. Given that most Python objects allocated at runtime are small in size, a fixed object

storage of size five is in most cases more than enough to accommodate all the attributes of

a Python object. Having a high setting on the size of fixed object storage enables better

performance but at the price of allocating more space for each Python object.

Flexible object storage on the other hand ensures that we allocate just enough memory

space for a Python object. Continuous storage class generation also guarantees that any

new object allocation is performance wise optimal based on the latest layout description

of the object. On a few benchmarks enabling continuous storage class generation causes a

moderate slowdown. This slowdown is caused by higher degree of polymorphism potentially

introduced by new storage class generation at an object access site. After the generation of a

new storage class, the Python object instances allocated using an old storage class might still

be alive. The mix of storage classes causes the access of Python objects of the same Python

class to use multiple inline cache entries. The increase in the number of cache entries leads

to a slowdown that we observed in our results. The more noticeable slowdown on richards

when enabling flexible object storage is due to the current implementation of Truffle we used

in this experiment. Switching the object storage configuration causes a change in the AST

inlining pattern for richards. As a consequence, this pattern change results in a slowdown

in our experiment. We expect that using a newer version of Truffle with updated inlining

heuristics will correct this fluctuation.

A fixed object storage configuration is always biased. A single size configuration cannot

work well for all Python programs let alone the fixed type distribute among the fields of

an object storage. Even with a high size setting, using fixed object storage is 14% slower

than the flexible approach as shown in Figure 7.3. The reason behind is the allocation of

large Python objects. Any attribute that cannot fit into the fixed object storage is stored in
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Figure 7.4: The memory overheads of fixed object storage of size 1, 3 and 5 relative to
flexible storage allocation with continuous generation

the spill array. The additional memory access incurred by accessing the spill array causes a

slowdown on the benchmark.

7.3.3 The Space Efficiency of Flexible Object Storages

We measured the memory space used to allocate fixed object storages for each selected

benchmark with three distinct size settings: one, three and five. We compare the memory

space numbers with the equivalent measured using flexible object storage with continuous

generation enabled. Figure 7.4 shows the results of this experiment normalized to the memory

space usage of flexible object storage. Using a fixed object storage of size one allocates on
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Figure 7.5: The slowdowns of fixed object storage of size 1, 3 and 5 relative to flexible storage
allocation with continuous generation
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average 1.63× more memory than using flexible object storage. Using a fixed object storage

of size five allocates up to 3.6× more memory than using the flexible configuration.

The result shows that using a fixed object storage causes significant memory overhead. We

attribute this inefficiency to the poor type distribution among the fields of a fixed object

layout. In theory one could design an improved solution that generates a library of fixed

object storage with various combination of sizes and type distributions ahead of time, and

pick the closest fit from the library when allocating a Python object. Since flexible object

storage ensures the optimal space and type distribution allocated for a given Python object.

This multi-variant fixed object storage solution, even in an ideal case, cannot surpass flexible

object storage in terms of space efficiency.

We also measured the slowdown of using a fixed object storage running the benchmarks

compared to using flexible object storages. The fixed object storage configurations used in

our experiment includes the following size settings: one, three and five. Figure 7.5 shows the

slowdowns of using various fixed object storages. Overall we observe slowdowns ranging from

2 to 20% in the results. The smaller the fixed object storage size the higher the slowdown.

Using a fixed object storage of size one causes a slowdown up to 20% on chaos. By increase

the size of fixed object storages the slowdowns tend to decrease or even diminish.

7.3.4 Discussion

There is always a trade-off when using fixed object storage. Empirically it is impossible to

find an optimal fixed object storage size that offers both space efficiency and performance.

One can either trade memory space for performance, by choosing a bigger fixed object storage

size, or inversely use a smaller size to save memory space at the price of a lower performance.

In our experiments, using fixed object storage either increases memory usage by 3.6×, or

shows a 20% performance loss.
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Flexible object storage, on the other hand, ensures minimum memory usage with optimal

performance for each Python class. Our technique produces a storage class that is optimal

in terms of both space and performance for the current status of the Python class. As

the program state evolves over time, our system automatically adapts to the change and

generates an updated storage class.

However, continuous flexible storage class generation can lead to multiple storage classes

coexisting for a single Python class. These generated storage classes incurs a small memory

overhead. This overhead is, however, negligible when compared to the memory allocated for

Python instance objects. Multiple storage classes also create multiple valid cache entries in

an object access inline cache. These additional cache entries cause the slowdown in richards

when compared to a fixed object storage of size 5. Given that the memory usage significantly

overweights the speed loss for richards of size 5, we think flexible object storage still delivers

a much better balance between space and performance than its fixed counterpart even in the

worst case of our tests.

Furthermore, ZipPy can potentially alleviate this slowdown by carefully reordering the cache

entries created for the same Python class. The reordering can hoist the cache entry created for

the newer generation storage class above the entries created for the older ones assuming more

frequent accesses on the Python objects allocated using the newer storage class. However,

we found in our tests that the benefit of this optimization is input dependent or program

behavior dependent. Some programs access the older storage classes more often, whereas

the other programs tend to access the newer ones. Thus, in our experiments, the benefit of

using cache entry reordering is inconclusive.
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Chapter 8

Related Work

Python, similar to other popular dynamic languages, is originally implemented as an in-

terpreter written in C, namely CPython [76]. Google later on developed unladen swallow,

an optimizing branch of CPython, attempting to improve its performance by adopting JIT

compilation techniques. As the existing virtual machines built for traditional statically typed

programming languages, such as JVM and Microsoft CLR [58, 38, 59], mature and gain more

popularity, they start to become multi-tenant. This movement drove the appearance of mul-

tiple hosted Python implementations: IronPython is a Python implementation that runs on

Microsoft’s CLR architecture [50]. Jython is a Python implementation written in Java and

hosted on the JVM [57]. As a more recent work, PyPy[80, 14, 13, 12, 15, 16, 4, 85] is a

fast and highly compliant implementation of the Python programming language. PyPy uses

a novel meta-tracing JIT compilation approach to speedup execution of Python programs.

Their approach separates the hosted Python bytecode interpreter from the underlying tracing

compiler, and enables PyPy as a framework for other language implementations.
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8.1 Hosted Interpreters for Dynamic Languages

Implementing a complete high-performance VM for each language is not a scalable approach.

Therefore, there are several projects that seek to build a framework supporting multiple

dynamic languages [101, 19, 94].

Our system builds on the publicly available Truffle framework of Oracle Labs [100]. Following

previously successful research in type specialization of bytecode interpreters (cf. [18, 17, 93]),

Würthinger et al. apply the concept of quickening to AST nodes, hence the term “node

rewriting.” The primary benefit of doing this on the AST level is that rewriting operations

can be much more general, since they are not restricted to the rigidity superimposed by

bytecode representation. In this thesis we have addressed some of the trade-offs between

interpreting on ASTs or bytecode interpreters. The Truffle framework provides a code gen-

eration system for generating type-specialized derivative nodes, as well as a generic type spe-

cialization mechanism. Würthinger et al. conjecture that such a high-level optimized AST

representation is ideally suitable for just-in-time compilation. In a more recent advance [99],

they explore the suitability of partial evaluation followed by just-in-time compilation, which

raises expectations for high speedups. Based on our experiences obtained by implementing

our full-fledged prototype, we concur with these expectations.

Our implementation differs from their work primarily in exploring and extending the ap-

plicability and performance to Python 3. Not only do we measure the type specialization

potential and compare implementation effort, but we also explore necessary optimizations

to obtain high performance on a stock Java virtual machine. By leveraging the recently

explored partial evaluation plus JIT compiler combination, we are able to gain substantial

speedups on top of our platform—requiring only little extra implementation effort.

Similar to Truffle, the PyPy project [80] also aims to provide an easy to use framework

for dynamic language implementers. There are several similarities, such as using RPython
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instead of C/C++ to implement interpreters. The differences are more of a subtle nature.

First, PyPy mostly focuses on bytecode interpreters instead of AST interpreters (though

they are supported). Second, PyPy uses a trace-based compilation approach relying on the

bytecode interpreter [14]. In theory, however, PyPy is not bound to the bytecode inter-

preter and could very well duplicate the Truffle approach. Furthermore, trace-based com-

pilation [36, 23, 9, 8, 7, 95, 53, 54] is somewhat similar to partial evaluation followed by

just-in-time compilation. Third, PyPy does not target an existing virtual machine, i.e., it

offers more degrees of freedom to language implementers.

For our project, these differences are, however, not relevant. While the PyPy project suc-

cessfully supports multiple languages, it does not offer a framework to generate interpreter

instructions plus type specialization. On the other hand, for some languages, the Java vir-

tual machine object model is not going to be a good fit, where the custom virtual machine

approach from PyPy is going to be more attractive.

Yet another way to “host” a dynamic languages was presented by Ishizaki et al. [55]. They

describe an approach to optimize dynamic languages by repurposing an existing JIT compiler

for a statically typed programming language. They reuse the IBM J9 Java VM, and extend

its JIT compiler to optimize a dynamic language. They experiment their approach on Python

2, and present optimizations that are specifically beneficial for dynamic languages.

The primary difference between the repurposed virtual machine approach and our imple-

mentation — probably generalizes to all implementations based on Truffle — is that we

have a higher-level view of optimizations. Since we are not bound by the CPython bytecode

representation, the AST interpreter has more potential to perform inlining. Similar to PyPy,

the repurposed VM approach does not make implementation of new languages easier, in the

sense that they do not provide a code generator.

Type feedback goes back to the successful optimization efforts of the Self programming
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language [21, 47, 48, 45, 49], extending previously successful results for implementing the

Smalltalk-80 system with inline caches and just-in-time compilation (along with pointing

out the importance of deoptimization) [26]. We refer the interested reader to a concise

survey covering the state-of-the-art until 2003 [6]. Using traditional assembly inline caching

to gather type feedback and subsequently performing speculative optimizations is the key

to efficient just-in-time compiling highly dynamic programming languages [22]. Since 2010,

bytecode interpreters benefit from simple and efficient inline caching, resulting in substantial

speedups [18, 93].

Our work does not require handling assembly code, but leverages efficient Java just-in-

time compilers [62, 71, 96], which directly build on the earlier Self and Smalltalk results.

Similarly, by operating on AST nodes rather than a bytecode representation, we avoid the

need to define this virtual instruction set, and sidestep the implementation effort required

to compile to this set of bytecode.

8.2 Truffle Languages

The approach of using Truffle/Graal to optimize implementations of dynamic languages via

specialization and other dynamic optimizations on an AST-based interpreter has become a

hot topic in the language runtime research community. We have seen recent works on using

Truffle to optimize dynamic programming languages other than Python as well as other

aspects of language runtimes that are traditionally regarded as difficult to optimize such as

debugging and native library interfacing.

Chris Seaton et al. [86] demonstrated their use of Truffle to provide low overhead debugging

in their Truffle-based Ruby implementation. Their work now has become part of the JRuby

project. Grimmer et al. proposed GNFI [41] a new native interface for the JVM that uses
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Graal to generate the native call stub dynamically at runtime. Grimmer et al. later on

extended their work onto TruffleJS [43], a Truffle-based JavaScript implementation written

in Java. They described how a JavaScript application running on TruffleJS can access C

data structure efficiently with the help of TruffleC [40], a C interpreter built using Truffle.

Wößet al. [98] described Truffle OSM, a high-performance object storage model for the Truffle

framework. This work was originally designed for TruffleJS and later on included as part of

the Truffle framework. Truffle OSM is similar to the fixed object storage described in this

thesis. The flexible object storage implementation in ZipPy is however a generalization of

Truffle OSM that takes advantage of the existence of class in Python.

In a more recent work, Grimmer et al. [42, 39] demonstrated the potential of language

interoperability on top of Truffle by hosting multiple Truffle language runtimes on the same

JVM instance. They introduced an interface for shareable objects that allows different

language runtimes to exchange data with converting objects from one language to the other.

Marr et al. [66] showed that the overhead of reflective operations and metaobject protocols

can be eliminated by using polymorphic cache inspired dispatch chains. They demonstrated

their work in the context of self-optimizing interpreters running on top of Truffle.

8.3 Generators and Coroutines

Murer et al. [68] presented the design of Sather iterators derived from the iterators in

CLU [64]. Sather iterators encapsulate their execution states and may “yield” or “quit”

to the main program. This design inspired the design of generators in Python.

Stadler et al. [89] presented a coroutine implementation for the JVMs that can efficiently

handle coroutine stacks by letting a large number of coroutines share a fixed number of stacks.

Our generator solution does not rely on coroutine stacks and does not require modifications
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to the host language.

In Ruby [81, 82, 35], methods may receive a code block from the caller. The method may

invoke the code block using “yield” and pass values into the code block. Ruby uses this

block parameter to implement iterators. An iterator method expects a code block from the

caller and “yields” a series of values to the block. To optimize the iterator method, an

efficient Ruby implementation can inline the iterator method to the caller and further inline

the call to the code block. This optimization combines the iterator method and the code

block in the same context, and resembles the generator peeling transformation. However,

iterator methods in Ruby are different from generator functions in Python. They do not

perform generator suspends and resumes. Generator peeling employs additional program

analysis and high level transformations, hence is more sophisticated than straight forward

call inlining.

Both CLU [5] and JMatch [65] have both implemented a frame optimization for the iterator

feature in their languages. To avoid heap allocation, their optimizations allocate iterator

frames on the machine stack. When an iterator yields back to the caller, its frame remains

intact on the stack. When resuming, the optimized program switches from the caller frame

to the existing iterator frame by restoring the frame pointer, and continues execution. Their

approaches, require additional frame pointer manipulation and saving the program pointer

of the iterator to keep track of the correct program location. Generator peeling, on the

other hand, is an interpretation level specialization, and does not introduce low-level modi-

fications to the compiler to generate special machine code for generators. It allows compiler

optimizations to map the caller frame and the generator frame accesses to the same machine

stack frame, and does not require saving the generator function program pointer to resume

execution. Therefore it is more efficient.

Watt [92] describes an inlining based technique that optimizes control-based iterators in

Aldor, a statically typed language. His approach requires multiple extra steps that iteratively
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optimize the data structures and the control flows after the initial inlining. Generator peeling

transforms the guest program AST in a single step before the compilation starts. It simplifies

the workload for the underlying compiler and enables more optimizations.
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Chapter 9

Conclusions

This research demonstrates various of techniques that accelerates the execution of hosted

interpreters for dynamic languages like Python. The optimizations we discussed in this the-

sis strengthens hosted interpreter as a promising architectural choice to implement dynamic

language runtimes in terms of both efficiency and implementation cost. In Chapter 3 we

apply the classic direct threading instruction dispatch technique to a real work implemen-

tation of Python in the context of a hosted bytecode interpreter on the JVM. Our system

automatically speedups Jython to a factor of 2.45× without having to implement a custom

compiler.

In Chapter 4 we presented the first full-fledged Python 3 prototype running atop the Java

virtual machine. Our implementation leverages the Truffle framework which is a runtime

system designed to efficiently host dynamic languages on a JVM. We show that ZipPy

exploits Truffle’s type specialization by replacing generic AST nodes with type-specialized

AST nodes during execution. We also present high-level optimizations that specifically

benefit Python programs such as efficient support of generators as well as call, loop, and

sequence specialization.
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We evaluate our system by comparing it with two other Python implementations, CPython

and Jython. Our ZipPy outperforms both CPython and Jython while being simple and

easy to implement. As a result, our ZipPy is the first and fastest Python 3 prototype

implementation targeting the JVM.

Many popular programming languages support generators to express iterators elegantly.

Their ability to suspend and resume execution sets them apart from regular functions and

make them harder to optimize. In Chapter 5 We address this challenge in context of a

modern, optimizing AST-interpreter for Python 3. It leverages the Truffle framework for the

JVM to benefit from type specialization and just-in-time compilation.

We use a specialized set of control-flow nodes to suspend and resume generator functions

represented as abstract syntax trees and present a generator peeling transformation to re-

move the overheads incurred by generators. Together, our optimizations transform common

uses of generators into simple, nested loops. This transformation simplifies the control flow

and eliminates the need for heap allocation of frames which in turn exposes additional opti-

mization opportunities to the underlying JVM. As a result, our generator-bound benchmarks

run 3.58× faster on average. Our techniques are neither limited to Python nor our language

implementation, ZipPy. This means that programmers no longer have to choose between

succinct code or efficient iteration—our solution offers both.

In Chapter 6 we demonstrate a novel technique that generalizes the existing approach of

modeling object in dynamic languages on the JVM. Not only that our technique offers the

same performance as the existing works do, but also it is significantly more space efficient. We

expect the adoption of our technique in other popular implementations of dynamic languages

on the JVM.
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for accessing c data structures from javascript. In Proceedings of the 9th Interna-
tional Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems PLE, ICOOOLPS ’14, pages 1:1–1:4, New York,
NY, USA, 2014. ACM.

[44] D. Grune. A View of Coroutines. SIGPLAN Not., 12(7):75–81, July 1977.

[45] U. Hölzle. Adaptive Optimization for SELF: Reconciling High Performance with Ex-
ploratory Programming. PhD thesis, Stanford University, Stanford, CA, USA, 1994.

[46] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed object-oriented
languages with polymorphic inline caches. In Proceedings of the European Conference
on Object-Oriented Programming, ECOOP ’91, pages 21–38, London, UK, UK, 1991.
Springer-Verlag.

134

http://github.com/


[47] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with dynamic de-
optimization. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming
Language Design and Implementation, PLDI ’92, pages 32–43, New York, NY, USA,
1992. ACM.

[48] U. Hölzle and D. Ungar. Optimizing dynamically-dispatched calls with run-time type
feedback. pages 326–336, 1994.

[49] U. Hölzle and D. Ungar. A third-generation self implementation: Reconciling respon-
siveness with performance. In Proceedings of the Ninth Annual Conference on Object-
oriented Programming Systems, Language, and Applications, OOPSLA ’94, pages 229–
243, New York, NY, USA, 1994. ACM.

[50] J. Hugunin et al. Ironpython: A fast python implementation for .net and mono. In
PyCON 2004 International Python Conference, volume 8, 2004.

[51] Hulu. http://www.hulu.com/.

[52] C. Humer, C. Wimmer, C. Wirth, A. Wöß, and T. Würthinger. A domain-specific
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